Charmonium production as probe of deconfinement – putting LHC results into perspective

Motivation J/psi data PbPb collisions at LHC

- yields, RAA, pt and rapidity dependence, feeding from B J/psi data pPb collisions at LHC Interpretation in terms of statistical hadronization model*

* work done in collaboration with A. Andronic,P. Braun-Munzinger and K. Redlich

9th conference on relativistic aspects of nuclear Physics, Rio de Janeiro, Sept. 23 – 27, 2013 in honor of the 70th birthday of Takeshi Kodama

BMBF Forschungsschwerpunkt

ALIC

201

ALICE Experiment

Johanna Stachel

the original idea (Matsui and Satz 1986): implant charmonia into the QGP and observe their modification (Debye screening of QCD), in terms of suppressed production in nucleus-nucleus collisions with or without plasma formation – sequential melting

new insight (Braun-Munzinger, J.S. 2000): QGP screens all charmonia, but charmonium production takes place at the phase boundary, enhanced production at colliders – signal for deconfinement

Charmonia as probe of deconfinement at LHC

look at slice of 1 unit in rapidity - the causally connected region

- ccbar formed in hard scattering event in early stage of the collision $(t = 1/2m_c = 0.08 \text{ fm})$
- medium with high density of color charges screens strong interaction (Debye screening, Satz/Matsui 1986)
- charm quarks diffuse, loose
 energy, thermalize see D-meson
 R_{AA} and v₂
- once T_c is reached, system hadronizes and D-mesons and maybe ccbar bound states form

Quarkonium as a Probe for Deconfinement at the LHC the Statistical (re-)Generation Picture

charmonium enhancement as fingerprint of deconfinement at LHC energy only free parameter: open charm cross section in nuclear collision Braun-Munzinger, J.S., Phys. Lett. B490 (2000) 196 and Andronic, Braun-Munzinger, Redlich, J.S., Phys. Lett. B652 (2007) 659

Johanna Stachel

Decision on Regeneration vs. Sequential Suppression from LHC Data

Picture: H. Satz 2009

J/psi spectrum and cross section in pp collisions

 good agreement between experiments
 complementary in acceptance: only ALICE has acceptance below
 6 GeV at mid-rapidity

measured both at 7 and 2.76 TeV <u>open issues:</u> statistics at mid-rapidity polarization (biggest source of syst error)

Reconstruction of J/psi in PbPb via mu+mu- and e+edecay

in spite of significant combinatorial background

(true electrons, not from J/ ψ decay but e.g. D- or B-mesons) resonance well visible

J/psi in PbPb collisions relative to pp

- nearly flat over large centrality range
- indication of rise for most central and mid-rapidity

Johanna Stachel

J/psi production in PbPb collisions: LHC relative to RHIC

forward rapidity

melting scenario not observed rather: enhancement with increasing energy density! (from RHIC to LHC and from forward to mid-rapidity)

Energy Density

Johanna Stachel

RUPRECHT-KARLS-UN

mid-rapidity

p_t dependence of **R**_{AA}

relative yield larger at low p_t in nuclear collisions
good agreement with CMS at high p_t

Johanna Stachel

Fraction of J/psi from B-decays

due to displaced decay-vertices, pseudoproper decay length can be used to determine B-fraction

Fraction of J/psi from B-decays

p_t integrated non-prompt B-fraction of small

within current errors no significant difference in pp and PbPb collisions

J/psi pt distributions as function of centrality

new feature: distributions get narrower (softer) for more central collisions

Softening of J/psi pt distributions for central PbPb coll.

At LHC for central collisions softening relative to peripheral collisions and relative to pp (opposite trend to RHIC) - consistent with formation of J/psi from thermalized c-quarks

Rapidity dependence of J/psi RAA

Least amount of suppression at mid-rapidity

J/psi production in pPb collisions

measurement in ALICE muon spectrometer submitted for publication arXiv:1308.6726 first results for mid-rapidity to be released soon

Rapidity and pt distributions in pPb compared to pp

Comparison J/psi production in pPb and Pbp to models

Relevance of pPb results for PbPb collisions

 $R_{\rm pPb} = 0.70 \pm 0.01(\text{stat.}) \pm 0.04(\text{syst.uncorr.}) \pm 0.03(\text{syst.part.corr.}) \pm 0.03(\text{syst.corr.}) \\ R_{\rm Pbp} = 1.08 \pm 0.01(\text{stat.}) \pm 0.08(\text{syst.uncorr.}) \pm 0.07(\text{syst.part.corr.}) \pm 0.04(\text{syst.corr.})$

if interpreted as shadowing (consistent with model comparisons), these results can be used to calculate the "cold nuclear matter effect" due to shadowing for PbPb collisions:

the x_F-ranges probed by J/psi production in pPb and Pbp are very close to the ones for gluon fusion selected in PbPb collisions $2.1 \ 10^{-5} - 9.2 \ 10^{-5}$ and $1.4 \ 10^{-2} - 6.1 \ 10^{-2}$ for nucleons moving away from and towards the muon spectrometer and then

$$R_{PbPb} = R_{pPb} \cdot R_{Pbp} = 0.76 \pm 0.07 \pm 0.10$$
 for y=2.5-4.0
and

 $R_{PbPb} \approx 0.72 \pm 0.15$ for midrapidity

R_{AA} in PbPb collisions: shadowing contribution

Elliptic Flow of J/psi

charm quarks thermalized in the QGP should exhibit the elliptic flow generated in this phase Centrality $\langle N_{part} \rangle$ EP resolution + (stat.) + (sv

ALICE data analysis in 4 centrality bins arXiv:1303.5880 and PRL (2013)

Centrality	$\langle N_{\rm part} \rangle$	EP resolution \pm (stat.) \pm (syst.)
5%-20%	283 ± 4	$0.548 \pm 0.003 \pm 0.009$
20%-40%	157 ± 3	$0.610 \pm 0.002 \pm 0.008$
40%-60%	69 ± 2	$0.451 \pm 0.003 \pm 0.008$
60%–90%	15 ± 1	$0.185 \pm 0.005 \pm 0.013$
20%-60%	113 ± 3	$0.576 \pm 0.002 \pm 0.008$

analyze opposite sign muon pairs relative to the V0 event plane as function of mass and for each pt bin

- fit distribution with

 $v_2(m_{\mu\mu}) = v_2^{\text{sig}} \alpha(m_{\mu\mu}) + v_2^{\text{bkg}}(m_{\mu\mu}) [1 - \alpha(m_{\mu\mu})]$

where $\alpha(m_{\mu\mu}) = S / (S+B)$ fitted to the mass spectrum

Elliptic Flow of J/psi

arXiv:1303.5880

first observation of significant J/ $\psi\,v_2$

Elliptic Flow of J/psi vs pt

• expect build-up with p_t as observed for π , p. K, Λ , ... and vanishing signal for high p_t region where J/ ψ not from hadronization of thermalized quarks

observed

J/psi and Statistical Hadronization

in AA collisions: strong indication of J/ψ regeneration

- production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties
- main uncertainties for models: open charm cross section, shadowing in Pb
- shadowing from pPb collisions: forward y: $R_{AA} = 0.76(12) \text{ mid-y } R_{AA} \text{ (estim)} = 0.72(15)$

Predictions for statistical hadronization

Predictions based on pQCD cross section for full LHC energy A. Andronic, P. Braun-Munzinger, K. Redlich, J. S. Phys. Lett. B652 (2007) 259

J/psi and transport models (and stat hadronization)

in AA collisions: strong indication of J/ψ regeneration

- transport models also well in line with R_{AA}
 part of J/psi from direct hard production, part dynamically generated in QGP
- How to distinguish?

flow of J/psi and excited state population – precision 2nd and 3rd generation data

for statistical hadronization J/ ψ yield proportional to N_c² higher yield at mid-rapidity predicted in line with observation already seen at RHIC by PHENIX

p_t Dependence of **R**_{AA}

statistical hadronization only expected for charm quarks thermalized in the QGP p_t dependence in line with this prediction in CMS only suppression

Precision spectra of J/psi should reveal flow and direct production at high pt

predictions A. Andronic, P. Braun-Munzinger, K. Redlich, J.S.

J/psi flow compared to models including (re-) generation

arXiv:1303.5880

 v_2 of J/ ψ consistent with hydrodynamic flow of charm quarks in QGP and statistical (re-)generation

Johanna Stachel

Conclusions

• Charm and beauty and J/spi cross section and spectra in pp in good agreement with pQCD predictions

- energy loss of partons in QGP: charm quarks lose energy nearly as effectively as gluons and light quarks
- heavy quarks also appear to thermalize need total cross section and charm quark observables at low p_t
- J/ψ: well on the way towards proof of deconfinement thermalized c-quarks form charmonia at hadronization, there charmonia exhibit collective elliptic flow

need complete story of all charmonia and bottomonia (down to $p_t=0$)

Happy birthday, dear Takeshi, and many happy returns!

backup

Measurements agree well with state of the art pQCD calculations

Charm and beauty via semi-leptonic decays

Inclusive electron spectrum from 2 PID methods: TPC-TOF-TRD and TPC-EMCAL

Charm and beauty electrons compared to pQCD

- ALICE data complimentary to ATLAS measurement at higher pt (somewhat larger y-interval)
- good agreement with pQCD
- at upper end of FONLL range for $p_t <$
- 3 GeV/c where charm dominates

arXiv:1205.5423 ATLAS: PLB707 (2012) 438 FONLL: Cacciari et al., arXiv:1205.6344

a first try at the total ccbar cross section in pp collisions

Beauty cross section in pp and ppbar collisions

D meson signals in Pb Pb collisions

measurement: reconstruction of hadronic decays of D-mesons (ALICE) semi-leptonic decays into electrons (ATLAS, ALICE) " into muons (ATLAS, ALICE)

Suppression of charm at LHC energy

pp reference at 2.76 TeV: measured 7 TeV spectrum scaled with FONLL cross checked with 2.76 TeV measurement (large uncertainty due to limited luminosity)

energy loss for all species of D-mesons within errors equal - not trivial energy loss of central collisions very significant - suppr. factor 5 for 5-15 GeV/c

Suppression of charm at LHC energy

Suppression only for Strongly Interacting Hard Probes

photons, Z and W scale with number of binary collisions in PbPb – not affected by medium \rightarrow demonstrates that charged particle suppression is medium effect: energy loss in QGP

Charm Quarks also Exhibit Elliptic Flow

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Model Description of Energy Loss and Flow of D-mesons

both are determined by transport properties of the medium (QGP) simultaneous description still a challenge for some models

Rapidity Dependence of J/psi R_{AA}

comparison to shadowing calculations:
at mid-rapidity suppression could be explained by shadowing only
at forward rapidity there seems to be additional suppression
need to measure shadowing

for statistical hadronization J/ ψ yield proportional to N_c² higher yield at mid-rapidity predicted in line with observation

Johanna Stachel

Statistical hadronization model predictions for psi'

Johanna Stachel

Population of excited states

in fact: here one can distinguish between the transport models that form charmonia already in QGP and statistical hadronization at phase boundary!