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Heavily influenced by work of M &4
(Related to talks of Kodama/Koide, Hirano at this conference)



“Lower limits” on viscosity

Danielewicz and Gyulassy used the uncertainity principle and Boltzmann

equation .
—1
n~ g <p> nlmfp 3 lmfp ~ <p>

but In strongly coupled system the Boltzmann equation is inappropriate
KSS and extensions from AdS/CFT (actually any Gauge/gravity)

n/s = 1/(4)

but theories not realistic, “highly symmetryc” /[athological (the UV-
completion is conformally invariant and strongly coupled ).

Is there a more general and intuitive way of thinking about these things?



A prelude: Kovtun, Moore, Romatschke, 1104.1586
Basic idea: Kubo formula measures “IR limit” of correlation between energy
momentum tensors. As 77 — 0 sound waves can travel to this limit and
alter correlation. (“infinite propagation of soundwaves” inpacts “IR limit of

Kubo formula™).
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where py,qz is the maximum momentum scale and v, = n/(e + p)
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Kovtun,Moore and Romatschke plug in p,,q. in terms of pae ~ (7)1 ~
n/(Ts) . Putting in npere = s/(47) and lattice EoS, they get
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This however, “assumes what you are trying to prove’: If there is a
“microscopic length”, you will eventually get a viscosity. Moreover, p,,ax
effect on s neglected, hence no renormalized 7/s at pyqx — 00 . What is
Pmaz 1N a generic strongly coupled theory?



is there a more general definition of p,,.., independent of any dissipative
length? Well, let us take a cue from AdS/CFT

The effect described below is not in classical supergravity: sound-waves

always ~ N? , microscopic degrees of freedom ~ N?

n N+ O (N)

S A N2

But the theory might be strongly coupled and conformal, N, = 3 < oc
Could p,nax have something to do with the microscopic rather than

dissipative length scale?




Landau and Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has three

length scales

,lmz'cro, < lmfp < Lmacro
~sTH B3T3 /(sT)

Weakly coupled: Ensemble averaging in Boltzmann equation good up to

O ((1/p)/%0,.(...)

Strongly coupled: classical supergravity requires A > 1 but AN ! =
gy < 1so

! il L V<1
TNCQ/3 < S_T or W macro

QGP: N, = 3 < 00,50 linicro ~ =& . Cold atoms: lyicro ~n ™13 > 217



Why is lypicro < lymfp necessary?  Without it, microscopic fluctuations
(which come from the finite number of DoFs and have nothing to do with
viscosity ) will drive fluid evolution.

Ap/p ~ C;l ~ N2, thermal fluctuations “too small” to be important!
But we know this approximation is far from perfect

o N.=3<K 0

e dN/dy ~ 101 7% <« o0

Lagrangian hydrodynamics (Kodama and others ): " Many" particles flowing
together in a "small” volume cell. But what does a strongly coupled

theory with “finitely many” DoFs look like? How to describe? (non)linear
hydrodynamics coupled driven by microscopic fluctuations? QM might help!




How low can viscosity go if A — oo ? In the limit where viscosity is so low
that soundwaves

Of amplitude so that momentum Ps,yupna ~ (area) (dp)cs > T

And wavenumber k. und ~ Psound
Survive (ie their amplitude does not decay to Fsound ~ 1) Tsound > 1/T
Quantum corrections to sound will be non-negligible, And in “conventional

widsom’” its not clear how to deal with this!
Is it relevant to physics? good question!
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A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes via sound and vortex emission (phase space
looks more "fractal”). Classically this process goes on until dissipation,
k ~mn/(Ts) . By essneitally dimensional analysis, Kolmogorov has showsn

: 2/3  _
that pI’OVIdEd U/(ST) < Leddy < Lboundary ’ E(k) ~ (%) / k 5/3
For a classical ideal fluid, it can go on forever, since dFE (k) ~ dpkcs can
be arbitrarily small for arbitrarily high £ by making 6p even smaller. but
for quantum perturbations, E > k so conservation of energy has to cap

cascade. A quantum viscosity!




Hydro as fields: (Nicolis et al,1011.6396 (JHEP))

Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates ¢j(x*), I = 1...3 of the position of a fluid cell originally at
¢r(t =0,2%),I =1...3 . (Lagrangian hydro . NB: no conserved charges)
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The system is a Fluid if it's Lagrangian obeys some symmetries (ldeal
hydrodynamics <> Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as " Goldstone bosons”, arising when a
theory is expanded around a classical solution.




Translation invariance at Lagrangian level <+ Lagrangian can only be a
function of B!/ = 9,¢'0"¢”’ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detB!/, diagB!’
The comoving fluid cell must not see a "preferred” direction <= SO(3)
Invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B
In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)




A few exercises for the bored public Check that L = F(B) leads to
T = (P + p)uyu, — Pgpw

provided that

1
6v B

Equation of state chosen by specifying F/(B) . “ldeal”: < F(B) = B*/3
VB is identified with the entropy and \FdF(B) with the microscopic
temperature. You can also show that

p=F(B), p=FB-2F(B)B, u'= " Per 1k Oud g0’ 0,0

dP p+p
OV Bu' =0 | CTTAr T T

le, v/ B is the conserved quantity corresponding to our earlier group.




|deal hydrodynamics and the microscopic scale
The most general Lagrangian is

B
L=TIF (ﬁ) ., B=TjdetB" | B'" =|09,.¢'0"¢’
0

Where ¢!=123 is the comoving coordinate of a volume element of fluid.

NB: Ty ~ Ag microscopic scale, includes thermal wavelength and g ~ N?
(or u/A for dense systems ). Ty — oo = classical limit

It is therefore natural to identify Ty with the microscopic scale!

At Ty < oo quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription!

Oln Z / 821n2
Z = /ngz exp [—Té/F(B)d4x] ,(O) ~ 5 <6g. <T5UT5U> — 97 9g7 )
z,09%,




And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!
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Unlike sound waves , Vortices can not give you a theory of free particles,
since they do not propagate: They carry energy and momentum but stay in
the same place! Can not expand such a quantum theory in terms of free
particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions. This does not mean
the theory is ill-defined, just that its strongly non-perturbative!



A perturbative attempt GT,Phys.Rev. D85 (2012) 065006
Give “quantum vortices” a propagation speed, £ = cprp . Equivalent to
modifying Lagrangian to

F(B) = F(B) + 56 Bir(= 9,6'0"6")

A quantum jelly, — fluid as ¢ — 0 Cross-sections have been computed
using these Feynman rules (NB: singular at ¢, — 0 .
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where p is the exchanged momentum, wq is the microscopic enthalpy density
(= T's) of the background fluid and oo = (f4/c?—2f2/ct+3c2+2f3+ct) =
O(1) + O(c?) + O(cd).
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find IR limit and compare it with Kubo formula!l. Can be done by Feynman
diagram techniques. “small parameter” the speed of sound.
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S.Jeon ( PRD 52, 3591 (1995)) showed us that to tree level the Kubo
formula viscosity is exactly equivalent to “Lifshitz-Landau formula” n =

# @) (M) by s lmgp = m NB This breaks unitarity. unsurprising:
Quantum theories can have anomalies, where the UV scale (Tél ) breaks
“fundamental” IR symmetries. Unitarity broken order-by-order in o-models




The leading order result

g8 3)2C(9) 4 137 [zt
Do g9 g, = C(B)°¢(9) T ~ 1.96(1077)
s B2(dF/dB)S 80640 256m4515 \ 45

The meat: If citg® ~ O (1), n/s finite and evolves with EoS.
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But we deformed the theory Can we do better? Yes, Lattice!
The non-deformed theory is essentially non-perturbative,but it might be
amenable to a lattice treatment

/ Do exp (2 / d%L) — / dep’ exp
lattice+Wick

Continuum limit: 6 — AzTy < 1 . Study the behaviour of limg_,o (X) .
Some specific considerations:

recall that B;; = 0,¢'0"¢” and u* = %e““578a¢185¢287gb3 and: L =
F(b) ; b= +/detB;; to avoid problems with periodic boundaries use
“shifted” fields (“subtract” the hydrostatic background)...

—(ToAx)* Z F(¢;)

T ¢I —z! = ﬁagbl — 9,7 + 15é



Some interesting observables

v (B(dF/dB))
(1)

e "Scalar perturbation

e "Vector perturbation” (u,u, + g,.,) = <BLU8M¢18V¢J>
e Vorticity Cp = ¢,(p+ p)uydz”

Averages and Fluctuation, correlator,spectral function interesting.
Modifications of either with T{; could indicate transition to “quantum
turbulence”.



S0, what BINERTIGEEETES
+Perturbations-— ——

can we
calculate?

Is there a phase transition at a critical 7, between a “classical”
hydrostatic vacuum and a vacuum dominated by quantum/thermal
turbulence (bound states of quantum vortices and the like)?

Is the theory trivial in the RG group sense?
What F'(B) admit to a well-behaved continuum limit?

These questions can be answered by a lattice calculation. No spurious cr
parameter or perturbative expansion needed



Consider a conformal fluid with no degeneracy and one microscopic DoF
In the classical hydrostatic limit (Where B =1 )

_ 412/3 _ grig4 )
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where ¢ is the microscopic degeneracy~ N2 . And of course

e O 0 0
. . olnZ | 0 e/3 0 0
o — p— —
u (17 0)7 <u,LLuV> 500 ’ <TMV> 5guy 0 0 6/3 0
0 O 0 e/3
with higher order correlations vanishing. If quantum vacuum non-trivial
Ty = (p+ p)uytty, + pguy 50 ¢ = F(B) # Too,p = B £ T, etc.
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Quantum mechanics means scale a potentially physical “cutoff”, dominating

dynamics aly ~ C . interesting structure at high C...
collective-dominated regime or lattice artifact?

Crossover to
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Normalized fluctuations
proportionality non-trivial
Fluctuations high Are we "missing” phase transition by measuring average
observables? Are fluctuations part of "new phase” 7
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Entropy and energy density correlators, “quantum corrections” to equations
of state?
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Off diagonal and diagonal elements have long-time correlation. To what
extent is this “similar to a quantum viscosity” 7



Instead of a conclusion: further steps

Understand the continuum limit How do observables converge when it
is approached?

e Langevan semi-classical limit? (Relativistic generalization of T.Koide,
T.Kodama, 1105.6256 )

e Under what circumstances is the hydrostatic limit stable?

e If vacuum non-trivial, what are the effective degrees of freedom?
(e.g. Enstrophy/Vortex crystal in 2D? Breakdown in translational
invariance easy to see in simulation!)

Connecting to "usual” transport BBGKY hyerarchy, gradient expansion



Spare slides



To — oo limit on the lattice

If lims_o (X) ~ (X0o) , Thermostatic state is stable.

termostatic

If lims_,o (X) / (Xo) ~ f(B) , vacuum non-trivial but “well-behaved”.

If lims .o (X) /(Xg) ~0" > or ~ exp(ad~!) for universal degrees of
diverge «, the theory is renormalizeable: ¢ is needed to set an absolute
scale, but dimensionless ratios are independent of it.

If lims .o (X) /(Xg) ~0~% or ~exp(ad™?t) for as that are (X )-specific
(One « for the scalar and another for the tensor,defined below) the
theory is “trivial” , in that taking 0 — 0 makes the vacuum diverge. In
this case, step (i) of the previous section is strictly impossible.



since we expect extended structures (e.g., vortices) we use HMC updates:
one therefore needs the yariation of the action w.r.t. the local field values...
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fields (¢I ) occupy lattice sites; derivatives (and hence By, b, u,, 1, ,
etc.) defined at body centers of hypercubes:
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C(= aTlp) | traj ATy p accept

20% 0.8 4000 | 0.001 / 0.0005 | 49% / 85%
16 1 10000 0.001 52%
124 | 1.33333 | 10000 0.0005 61%
104 1.6 10000 0.0005 41%
84 2 10000 0.00025 72%
6* | 2.66667 | 10000 0.00025 56%

ep e ciopen MP code

. HMC agorithm
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Non-perturbative dissipation loss ( “quantum” turbulence)

Classical hydrodynamics has infinitely many solutions arbitrarily close

together.
Could WKB-type jumps among solutions with different entropy content be

allowed? work in progress!




Example: The Dalambert problem

Analytical ﬁ Cylinder

solution ( ) — and
Euler equation =" gsymptotic flow

i N

Analytically solvable:

2 2
UT:U(l—R—)COSQ : vgz—U(1+R—) sin 6



Analytical ————— Cylinder
solution %< | and
Euler equation i%/;“ asymptotic flow

2
p(U1) _ (U
For Energy to be the same p(U;) — (ﬁ)

NB: Entropy density different for each U



Analytica ——————— cvlind
e Cylinder

solution ( ) — and
Euler equation =——~3—/~"" gsymptatic flow

Rewrite in ¢; and find minima in <¢£~0’U’5| 5?0, . g,> ~ exp [—ASU,U/}

Z (¢£5,U5 ¢a; w ) ( N UE ¢J

e IJ
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What does this mean?

Why does a quintessentially unitary theory (quantum mechanics!) set a
lower limit to dissipative processes?

How does one reconcile quantum viscosity with Von Neumann’s theorem?

d
%Trﬁ Inp=20

My tentative answer: Quantum field theory also sets limit to scale beyond

which we measure! Quantum correlations in a many particle system
inevitably go over that scale.




What the hell does this all mean? Il
Loss of unitarity at the renormalization scale. A quantum field with many
particles obeys the fully quantum equation of motion
dp

%ZZ[HMO]

where p is the density operator for the field

plr) = ZAk,kfa}:,k/\O >< Ofag, i
kK

and H is the Hamiltonian density.

Like all QFT equations, this has to be regulated by a momentum scale A
(plus, fluid theory non-renormalizable). Generally, information should flow
across the cut-off (ie, get lost among the “fast” degrees of freedom), so
effective theory dissipative




Conclusions
le, what needs to be done before | have a result

Understand divergences Under what circumstances, if any, can
g, CT, Pmaz diverge while 717/s is constant

Understanding how does this constrain the “running” of 17/s with VB, cr

Understanding whether this makes any sense...

Work in progress... if you think you can help, Id like to hear from you!



