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Based on Phys.Rev. D85 (2012) 065006 (GT) ongoing work with Tommy
Burch (presented at Lattice2013).

Heavily influenced by work of
(Related to talks of Kodama/Koide, Hirano at this conference)



“Lower limits” on viscosity

Danielewicz and Gyulassy used the uncertainity principle and Boltzmann
equation

η ∼ 1

5
〈p〉nlmfp , lmfp ∼ 〈p〉−1

but In strongly coupled system the Boltzmann equation is inappropriate

KSS and extensions from AdS/CFT (actually any Gauge/gravity)

η/s = 1/(4π)

but theories not realistic, “highly symmetryc”/[athological (the UV-
completion is conformally invariant and strongly coupled ).

Is there a more general and intuitive way of thinking about these things?



A prelude: Kovtun, Moore, Romatschke, 1104.1586
Basic idea: Kubo formula measures “IR limit” of correlation between energy
momentum tensors. As η → 0 sound waves can travel to this limit and
alter correlation. (“infinite propagation of soundwaves” inpacts “IR limit of
Kubo formula”).
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where pmax is the maximum momentum scale and γη = η/(e+ p)
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Given a pmax , ηbare → 0 ⇒ ηreno → pmax/η → ∞ .



Kovtun,Moore and Romatschke plug in pmax in terms of pmax ∼ (τπ)
−1 ∼

η/(Ts) . Putting in ηbare = s/(4π) and lattice EoS, they get

G.Moore,P.Romatschke
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s=KSSη/Nc=3, 

This however, “assumes what you are trying to prove”: If there is a
“microscopic length”, you will eventually get a viscosity. Moreover, pmax

effect on s neglected, hence no renormalized η/s at pmax → ∞ . What is
pmax in a generic strongly coupled theory?



is there a more general definition of pmax, independent of any dissipative
length? Well, let us take a cue from AdS/CFT

The effect described below is not in classical supergravity: sound-waves
always ∼ N0

c , microscopic degrees of freedom ∼ N2
c

η

s
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c
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But the theory might be strongly coupled and conformal, Nc = 3 ≪ ∞
. Could pmax have something to do with the microscopic rather than
dissipative length scale?



Landau and Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has three
length scales

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
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≪ η

sT

(

or
1√
λT

)

≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? Without it, microscopic fluctuations
(which come from the finite number of DoFs and have nothing to do with
viscosity ) will drive fluid evolution.

∆ρ/ρ ∼ C−1
V ∼ N−2

c , thermal fluctuations “too small” to be important!

But we know this approximation is far from perfect

• Nc = 3 ≪ ∞

• dN/dy ∼ 101−3 ≪ ∞

Lagrangian hydrodynamics (Kodama and others ): ”Many” particles flowing
together in a ”small” volume cell. But what does a strongly coupled
theory with “finitely many” DoFs look like? How to describe? (non)linear
hydrodynamics coupled driven by microscopic fluctuations? QM might help!



How low can viscosity go if Λ → ∞ ? In the limit where viscosity is so low
that soundwaves

Of amplitude so that momentum Psound ∼ (area)λ (δρ) cs ≫ T

And wavenumber ksound ∼ Psound

Survive (ie their amplitude does not decay to Esound ∼ T ) τsound ≫ 1/T

Quantum corrections to sound will be non-negligible, And in “conventional
widsom” its not clear how to deal with this!
Is it relevant to physics? good question!



System I
"macro"

k<

k>
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System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes via sound and vortex emission (phase space
looks more ”fractal”). Classically this process goes on until dissipation,
k ∼ η/(Ts) . By essneitally dimensional analysis, Kolmogorov has showsn

that provided η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE
dt

)2/3
k−5/3

For a classical ideal fluid, it can go on forever, since δE(k) ∼ δρkcs can
be arbitrarily small for arbitrarily high k by making δρ even smaller. but
for quantum perturbations, E ≥ k so conservation of energy has to cap
cascade. A quantum viscosity!



Hydro as fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(x

µ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)

φ

φ

1

3φ

φ

φ

1

3
φ

φ

φ

1

3
φ

2
2

2

The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as ”Goldstone bosons”, arising when a
theory is expanded around a classical solution.



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφ

I∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B
In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ǫµαβγǫIJK ∂αφ

I∂βφ
J∂γφ

K

Equation of state chosen by specifying F (B) . “Ideal”: ⇔ F (B) = B4/3
√
B is identified with the entropy and

√
BdF (B)

dB with the microscopic
temperature. You can also show that

∂µ
√
Buµ = 0 , s = −dP

dT
=

p+ ρ

T
Ie,

√
B is the conserved quantity corresponding to our earlier group.



Ideal hydrodynamics and the microscopic scale
The most general Lagrangian is

L = T 4
0F

(
B

T 6
0

)

, B = T 6
0 detBIJ , BIJ =

∣
∣∂µφ

I∂µφJ
∣
∣

Where φI=1,2,3 is the comoving coordinate of a volume element of fluid.

NB: T0 ∼ Λg microscopic scale, includes thermal wavelength and g ∼ N2
c

(or µ/Λ for dense systems ). T0 → ∞ ⇒ classical limit
It is therefore natural to identify T0 with the microscopic scale!
At T0 < ∞ quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription!

Z =

∫

Dφi exp

[

−T 4
0

∫

F (B)d4x

]

, 〈O〉 ∼ ∂lnZ
∂...

(

eg.
〈

T x
µνT

x′

µν

〉

=
∂2lnZ

∂gxµν∂g
x′

µν

)



And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!

Llinear = ˙~πL
2 − c2s(∇.~πL)

2

︸ ︷︷ ︸
sound wave

+ π̇T
2

︸︷︷︸
vortex

+Interactions

Unlike sound waves , Vortices can not give you a theory of free particles,
since they do not propagate: They carry energy and momentum but stay in
the same place! Can not expand such a quantum theory in terms of free
particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions. This does not mean
the theory is ill-defined, just that its strongly non-perturbative!



A perturbative attempt GT,Phys.Rev. D85 (2012) 065006
Give “quantum vortices” a propagation speed, E = cTp . Equivalent to
modifying Lagrangian to

F (B) → F (B) +
1

2
c2TBII(= ∂µφ

I∂µφI)

A quantum jelly, → fluid as cT → 0 Cross-sections have been computed
using these Feynman rules (NB: singular at cT → 0 .
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where p is the exchanged momentum, w0 is the microscopic enthalpy density
(= Ts) of the background fluid and α ≡ (f4/c

2
s−2f2

3/c
4
s+3c2s+2f3+c4s) =

O(1) +O(c2s) +O(c4s).



〈Txy(x)Txy(x
′)〉 = N

∫

DB (Txy(x)Txy(x
′)) exp

[

−iT 4
0

∫

F (B)d4x

]

find IR limit and compare it with Kubo formula!. Can be done by Feynman
diagram techniques. “small parameter” the speed of sound.

µυT   (k)
∼

µυ

∼
T   (k’)

S.Jeon ( PRD 52, 3591 (1995)) showed us that to tree level the Kubo
formula viscosity is exactly equivalent to “Lifshitz-Landau formula” η =

# 〈p〉 〈n〉 lmfp , lmfp = 1
〈〈nσ〉〉 NB This breaks unitarity. unsurprising:

Quantum theories can have anomalies, where the UV scale (T 4
0 ) breaks

“fundamental” IR symmetries. Unitarity broken order-by-order in σ-models



The leading order result

η

s
= K0

c14T g8

B2(dF/dB)6
, K0 =

ζ(3)2ζ(9)
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≃ 1.96(10−9)

The meat: If c14T g8 ∼ O (1), η/s finite and evolves with EoS.
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But we deformed the theory Can we do better? Yes, Lattice!
The non-deformed theory is essentially non-perturbative,but it might be
amenable to a lattice treatment

∫

DφI exp

(

i

∫

d4xL

)

→︸︷︷︸
lattice+Wick

∫

dφi
I exp

[

−(T0∆x)4
∑

i

F (φi)

]

Continuum limit: δ → ∆xT0 ≪ 1 . Study the behaviour of limδ→0 〈X〉 .
Some specific considerations:

recall that BIJ = ∂µφ
I∂µφJ and uµ = 1

bǫ
µαβγ∂αφ

1∂βφ
2∂γφ

3 and: L =
F (b) ; b =

√
detBIJ to avoid problems with periodic boundaries use

“shifted” fields (“subtract” the hydrostatic background)...

πI = φI − xI → ∂αφ
I = ∂απ

I + 1δIα



Some interesting observables

• ”Scalar perturbation” 〈B(dF/dB)〉

〈Tµ
µ 〉

• ”Vector perturbation” 〈uµuν + gµν〉 =
〈

1
BIJ

∂µφ
I∂νφ

J
〉

• Vorticity CP =
∮

P
(p+ ρ)uµdx

µ

Averages and Fluctuation, correlator,spectral function interesting.
Modifications of either with T0 could indicate transition to “quantum
turbulence”.



Trivial ground state
+Perturbations

Non−trivial ground state

So, what
can we
calculate?

Is there a phase transition at a critical T0 between a “classical”
hydrostatic vacuum and a vacuum dominated by quantum/thermal
turbulence (bound states of quantum vortices and the like)?

Is the theory trivial in the RG group sense?
What F (B) admit to a well-behaved continuum limit?

These questions can be answered by a lattice calculation. No spurious cT
parameter or perturbative expansion needed



Consider a conformal fluid with no degeneracy and one microscopic DoF
In the classical hydrostatic limit (Where B = 1 )

e = T 4
0B

2/3 = gπ2

60 T
4

s = T 3
0

√
B = gπ2

45 T
3

T = e+p
s = 4

3gT0B
1/6







T =
4

3g
T0 =

χ

a
?

where g is the microscopic degeneracy∼ N2
c . And of course

~uµ = (1,~0), 〈uµuν〉 = δ00 , 〈Tµν〉 =
δ lnZ

δgµν







e 0 0 0
0 e/3 0 0
0 0 e/3 0
0 0 0 e/3







with higher order correlations vanishing. If quantum vacuum non-trivial
Tµν = (p+ ρ)uµuν + pgµν so e = F (B) 6= T00, p = BdF (b)

dB 6= Tii etc.



Quantum mechanics means scale a potentially physical “cutoff”, dominating
dynamics aT0 ∼ C . interesting structure at high C... Crossover to
collective-dominated regime or lattice artifact?



Normalized fluctuations independent of C, but the constants of
proportionality non-trivial
Fluctuations high Are we ”missing” phase transition by measuring average
observables? Are fluctuations part of ”new phase” ?



Entropy and energy density correlators, “quantum corrections” to equations
of state?



?

Sound mode?

Off diagonal and diagonal elements have long-time correlation. To what
extent is this “similar to a quantum viscosity” ?



Instead of a conclusion: further steps

Understand the continuum limit How do observables converge when it
is approached?

• Langevan semi-classical limit? (Relativistic generalization of T.Koide,
T.Kodama, 1105.6256 )

• Under what circumstances is the hydrostatic limit stable?
• If vacuum non-trivial, what are the effective degrees of freedom?
(e.g. Enstrophy/Vortex crystal in 2D? Breakdown in translational
invariance easy to see in simulation!)

Connecting to ”usual” transport BBGKY hyerarchy, gradient expansion



Spare slides



T0 → ∞ limit on the lattice

If limδ→0 〈X〉 ∼ 〈X0〉termostatic , Thermostatic state is stable.

If limδ→0 〈X〉 / 〈X0〉 ∼ f(B) , vacuum non-trivial but “well-behaved”.

If limδ→0 〈X〉 / 〈X0〉 ∼ δ−α or ∼ exp(αδ−1) for universal degrees of
diverge α, the theory is renormalizeable: δ is needed to set an absolute
scale, but dimensionless ratios are independent of it.

If limδ→0 〈X〉 / 〈X0〉 ∼ δ−α or ∼ exp(αδ−1) for αs that are 〈X〉-specific
(One α for the scalar and another for the tensor,defined below) the
theory is “trivial” , in that taking δ → 0 makes the vacuum diverge. In
this case, step (ii) of the previous section is strictly impossible.



since we expect extended structures (e.g., vortices) we use HMC updates:
one therefore needs the variation of the action w.r.t. the local field values...

δS
δφI(x)

= δS
δb

δb
δ(∂αφJ)

δ(∂αφ
J)

δφI(x)
=

∑

y,µ,ν,σ
dF
db δ

IJδ(y − x± µ̂/2± ν̂/2± σ̂/2) b
8B

−1
JK |ǫµνσα| ∂αφK

∣
∣
y−α̂/2

y+α̂/2

fields (φI ) occupy lattice sites; derivatives (and hence BIJ , b, uµ, Tµν ,
etc.) defined at body centers of hypercubes:
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L4 C(= aT0) traj dτMD accept
204 0.8 4000 0.001 / 0.0005 49% / 85%
164 1 10000 0.001 52%
124 1.33333 10000 0.0005 61%
104 1.6 10000 0.0005 41%
84 2 10000 0.00025 72%
64 2.66667 10000 0.00025 56%

HMC algorithm

Runs with constant physical volume

L=(16/C)4 4

C: assumed fundamental
scale  ~aT 0

C/Open MP code



Non-perturbative dissipation loss (“quantum” turbulence)

???

Classical hydrodynamics has infinitely many solutions arbitrarily close
together.
Could WKB-type jumps among solutions with different entropy content be
allowed? work in progress!



Example:The Dalambert problem

Euler equation
solution
Analytical Cylinder

and
asymptotic flow

Analytically solvable:

vr = U

(

1− R2

r2

)

cos θ , vθ = −U

(

1 +
R2

r2

)

sin θ



Euler equation
solution
Analytical Cylinder

and
asymptotic flow

For Energy to be the same ρ(U1)
ρ(U2)

=
(
U2
U1

)2

NB: Entropy density different for each U



Euler equation
solution
Analytical Cylinder

and
asymptotic flow

Rewrite in φI and find minima in
〈

φI
~x0,U,E

∣
∣
∣

∣
∣
∣φI

~x0
′,U ′,E′

〉

∼ exp
[
−∆SU,U ′

]

∆SU,U ′ =

∫

d4x
∑

IJ

δ2S

δφIδφJ

∣
∣
∣
∣
φI,J=φI

~x0,U,E

∑

IJ

(

φI
~x0,U,E − φI

~x′
0,U

′,E

)(

φJ
~x0,U,E − φJ

~x′
0,U



What does this mean?

Why does a quintessentially unitary theory (quantum mechanics!) set a
lower limit to dissipative processes?
How does one reconcile quantum viscosity with Von Neumann’s theorem?

d

dt
Trρ̂ ln ρ̂ = 0

My tentative answer: Quantum field theory also sets limit to scale beyond
which we measure! Quantum correlations in a many particle system
inevitably go over that scale.



What the hell does this all mean? II
Loss of unitarity at the renormalization scale. A quantum field with many
particles obeys the fully quantum equation of motion

dρ̂

dt
= i [H, ρ̂]

where ρ̂ is the density operator for the field

ρ̂(x) =
∑

k,k′

Ak,k′a
+
k,k′|0 >< 0|ak,k′

and H is the Hamiltonian density.
Like all QFT equations, this has to be regulated by a momentum scale Λ
(plus, fluid theory non-renormalizable). Generally, information should flow
across the cut-off (ie, get lost among the “fast” degrees of freedom), so
effective theory dissipative



Conclusions
Ie, what needs to be done before I have a result

Understand divergences Under what circumstances, if any, can
g, cT , pmax diverge while η/s is constant

Understanding how does this constrain the “running” of η/s with
√
B, cT

Understanding whether this makes any sense...

Work in progress... if you think you can help, Id like to hear from you!


