Nonlinear waves in strongly interacting relativistic fluids

F.S. Navarra

IFUSP

Introduction

Hydrodynamics

Equations of state

Linearization

Beyond linearization: RPM

Nonlinear wave equations

Cold hadron matter

Cold quark matter

Hot quark matter

Conclusion

Fogaca, FSN, Ferreira Filho arXiv:1212.6932

Happy Birthday Takeshi!

Perturbations in the QGP

Mach cones ?

Relativistic Hydrodynamics

Energy momentum conservation

$$\partial_{\nu}T_{\mu}^{\ \nu} = 0 \qquad T^{\alpha\beta} = (\varepsilon + p)u^{\alpha}u^{\beta} - pg^{\alpha\beta}$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{(\varepsilon + p)\gamma^2} \left(\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\right)$$

$$\partial_{\nu} j_B{}^{\nu} = 0 \qquad \qquad j_B{}^{\nu} = \rho_B u^{\nu}$$

Entropy conservation

$$\frac{\partial \rho_B}{\partial t} + \gamma^2 v \rho_B \left(\frac{\partial v}{\partial t} + \vec{v} \cdot \vec{\nabla} v \right) + \vec{\nabla} \cdot (\rho_B \vec{v}) = 0$$

 $\partial_{\nu}(su^{\nu}) = 0$

$$\frac{\partial s}{\partial t} + \gamma^2 v s \left(\frac{\partial v}{\partial t} + \vec{v} \cdot \vec{\nabla} v \right) + \vec{\nabla} \cdot (s\vec{v}) = 0$$

Hadronic matter

Relativistic mean field model (nonlinear Walecka):

$$\mathcal{L}^* = \bar{\psi}[(i\gamma_{\mu}\partial^{\mu} - g_V\gamma_0 V_0) - (M - g_S\phi_0)]\psi + \frac{1}{2}(\partial_{\mu}\phi_0\partial^{\mu}\phi_0 - m_S^2\phi_0^2) +$$

$$+\frac{1}{2}(\vec{\nabla}V_0)^2 + \frac{1}{2}m_V^2V_0^2 - \frac{b}{3}\phi_0^3 - \frac{c}{4}\phi_0^4$$

Mean field Lagrangian

$$\left\{ \begin{array}{l} -\vec{\nabla}^2 V_0 + m_V^2 V_0 = g_V \bar{\psi} \gamma^0 \psi \\ (\partial_\mu \partial^\mu + m_S^2) \phi_0 = g_S \bar{\psi} \psi - b \phi_0^2 - c \phi_0^3 \\ \left[i \gamma_\mu \partial^\mu - g_V \gamma_0 V_0 - (M - g_S \phi_0) \right] \psi = 0 \end{array} \right.$$
 Equations of motion

$$T^{\mu\nu} = \frac{\partial \mathcal{L}^*}{\partial(\partial_\mu \eta_i)} (\partial^\nu \eta_i) - g^{\mu\nu} \mathcal{L}^* - \left[\partial_\beta \frac{\partial \mathcal{L}^*}{\partial(\partial_\mu \partial_\beta \eta_i)} \right] (\partial^\nu \eta_i) + \frac{\partial \mathcal{L}^*}{\partial(\partial_\mu \partial_\beta \eta_i)} (\partial_\beta \partial^\nu \eta_i)$$

$$\implies \qquad \varepsilon = \langle T_{00} \rangle \qquad p = \frac{1}{3} \langle T_{ii} \rangle$$
Usually:
$$\nabla^2 V_0 = 0 \qquad \longrightarrow \qquad V_0 = \frac{g_V}{m_V^2} \rho_B$$
Here:
$$V_0 = \frac{g_V}{m_V^2} \rho_B$$

Here:
$$V_0 = \frac{g_V}{m_V^2} \rho_B \longrightarrow \nabla^2 V_0 = \frac{g_V}{m_V^2} \nabla^2 \rho_B$$

$$\varepsilon = \frac{g_V^2}{2m_V^2} \rho_B^2 + \frac{g_V^2}{2m_V^4} \rho_B \vec{\nabla}^2 \rho_B + \dots$$

Quark matter

MIT Bag Model

$$T = 0 \quad \begin{cases} \varepsilon(\rho_B) = \left(\frac{3}{2}\right)^{7/3} \pi^{2/3} \rho_B^{4/3} + \mathcal{B} \\ p(\rho_B) = \frac{1}{3} \left(\frac{3}{2}\right)^{7/3} \pi^{2/3} \rho_B^{4/3} - \mathcal{B} \end{cases}$$

$$\begin{aligned} \varepsilon &= \mathcal{B} + \frac{\gamma_G}{(2\pi)^3} \int d^3k \ k \ (e^{k/T} - 1)^{-1} + \frac{\gamma_Q}{(2\pi)^3} \int d^3k \ k \ [n_{\vec{k}} + \bar{n}_{\vec{k}}] \\ p &= -\mathcal{B} + \frac{1}{3} \bigg\{ \frac{\gamma_G}{(2\pi)^3} \int d^3k \ k \ (e^{k/T} - 1)^{-1} + \frac{\gamma_Q}{(2\pi)^3} \int d^3k \ k \Big[n_{\vec{k}} + \bar{n}_{\vec{k}} \Big] \bigg\} \\ s &= 4 \frac{37}{90} \pi^2 T^3 \qquad c_S^2 = \frac{\partial p}{\partial \varepsilon} = \frac{1}{3} \end{aligned}$$

Mean field QCD

Fogaca, FSN, PLB (2011) arXiv:1012.5266

(attempt to describe a sQGP at T=0)

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \sum_{q=1}^{N_f} \bar{\psi}^q_i \Big[i\gamma^\mu (\delta_{ij}\partial_\mu - igT^a_{ij}G^a_\mu) - \delta_{ij}m_q \Big] \psi^q_j$$

 $F^{a\mu\nu} = \partial^{\mu}G^{a\nu} - \partial^{\nu}G^{a\mu} + gf^{abc}G^{b\mu}G^{c\nu}$

$$\mathcal{L}_0 = -\frac{1}{2}\alpha_0^a(\vec{\nabla}^2\alpha_0^a) + \frac{m_G^2}{2}\alpha_0^a\alpha_0^a - \mathcal{B}_{QCD} + \bar{\psi}_i \Big(i\delta_{ij}\gamma^\mu\partial_\mu + g\gamma^0 T^a_{ij}\alpha_0^a\Big)\psi_j$$

Equations of motion

$$-\vec{\nabla}^2 \alpha_0^a + m_G^2 \alpha_0^a = -g\rho^a$$
$$\left(i\gamma^\mu \partial_\mu + g\gamma^0 T^a \alpha_0^a\right)\psi = 0$$

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\eta_{i})} (\partial^{\nu}\eta_{i}) - g^{\mu\nu}\mathcal{L} - \left[\partial_{\beta}\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\partial_{\beta}\eta_{i})}\right] (\partial^{\nu}\eta_{i}) + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\partial_{\beta}\eta_{i})} (\partial_{\beta}\partial^{\nu}\eta_{i})$$

$$\begin{cases} \varepsilon = \left(\frac{27g^{2}}{16m_{G}^{2}}\right)\rho_{B}^{2} + \left(\frac{27g^{2}}{16m_{G}^{4}}\right)\rho_{B}\nabla^{2}\rho_{B} + \mathcal{B}_{QCD} \\ p = \left(\frac{27g^{2}}{16m_{G}^{2}}\right)\rho_{B}^{2} + \left(\frac{9g^{2}}{4m_{G}^{4}}\right)\rho_{B}\nabla^{2}\rho_{B} - \mathcal{B}_{QCD} \end{cases}$$
EOS

I) Linearization

Expansion around the equilibrium: v = 0

$$\varepsilon(x, y, z, t) = \varepsilon_0 + \delta\varepsilon(x, y, z, t)$$
$$p(x, y, z, t) = p_0 + \delta p(x, y, z, t)$$

Neglect:

$$v^2, \ v\delta\varepsilon, \ v\delta P, \ \vec{v}\cdot\vec{\nabla}v, \ (\vec{v}\cdot\vec{\nabla})\vec{v}$$

Obtain :

$$\frac{\partial^2(\delta\varepsilon)}{\partial t^2} - c_S^2 \vec{\nabla}^2(\delta\varepsilon) = 0$$

 $c_S = \left(\frac{\partial p}{\partial \varepsilon}\right)^{1/2}$

linear waves

sound velocity

What if the perturbations are not so small?

II) Beyond linearization:

Reductive Perturbation Method (RPM)

$$\frac{\partial F}{\partial t} + \alpha F \frac{\partial F}{\partial x} = 0$$

Washimi, Taniuti, 1966 Leblond, 2008 Fogaca, FSN, Ferreira Filho arXiv:1212.6932

 $F(x,t) = F_0 + \overline{F_1} + \overline{F_2} + \dots \qquad F_0 = const$

$$F(x,t) = F_0 + \sigma F_1(x,t) + \sigma^2 F_2(x,t) + \sigma^3 F_3(x,t) + \dots \qquad \sigma < 1$$

$$\sigma \frac{\partial F_1}{\partial t} + \sigma^2 \frac{\partial F_2}{\partial t} + \sigma \alpha F_0 \frac{\partial F_1}{\partial x} + \sigma^2 \alpha F_0 \frac{\partial F_2}{\partial x} + \sigma^2 \alpha F_1 \frac{\partial F_1}{\partial x} + \dots = 0$$

"stretched" coordinates

$$\sigma^{n+1}\frac{\partial F_1}{\partial \tau} + \sigma^{n+2}\frac{\partial F_2}{\partial \tau} + \sigma^{m+2}\alpha F_1\frac{\partial F_1}{\partial \xi} + \sigma\alpha F_0\left[\sigma^m\frac{\partial F_1}{\partial \xi} + \sigma^{m+1}\frac{\partial F_2}{\partial \xi}\right] = 0$$

$$\sigma^2 \left[\frac{\partial F_1}{\partial \tau} + \alpha F_1 \frac{\partial F_1}{\partial \xi} \right] + \sigma^3 \left[\frac{\partial F_2}{\partial \tau} \right] = 0$$

$$\frac{\partial \overline{F_1}}{\partial t} + \alpha \ \overline{F_1} \ \frac{\partial \overline{F_1}}{\partial x} = 0$$

nonlinear waves

Nonlinear wave equations

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{(\varepsilon + p)\gamma^2} \Big(\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\Big) \qquad \qquad \text{Euler}$$

EOS:
$$\vec{\nabla}p = c_s^{\ 2}\vec{\nabla}\varepsilon$$

If:
$$\varepsilon \propto ... + ... \vec{\nabla}^2 \rho_B \longrightarrow \vec{\nabla} p \propto ... + ... \vec{\nabla} (\vec{\nabla}^2 \rho_B) ... +$$

$$\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} + \beta \frac{\partial^3 \rho_1}{\partial x^3} = 0$$

Korteweg - de Vries (KdV)

If:

$$\nabla^2 \dots = 0$$

$$\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} = 0$$

Breaking wave equation

In real life

$$\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} + \beta \frac{\partial^3 \rho_1}{\partial x^3} = 0$$

KdV solitons

 $\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} = 0$

"Breaking wave":

KdV solitons in cold nuclear matter

$$\hat{\rho}_1(x,t) = \frac{3}{(3-c_s^2)} \frac{(u-c_s)}{c_s} \operatorname{sech}^2 \left[\frac{m_v^2}{g_v} \sqrt{\frac{(u-c_s)c_s M}{2\rho_0}} (x-ut) \right]$$

Fowler, Raha, Weiner, PLB (1982)

Fogaca, Navarra, PLB (2006) nucl-th/0512097 PLB (2007) nucl-th/0611011

Fogaca, Navarra, Ferreira Filho NPA (2009) arXiv:0801. 3938

KdV solitons in cold quark matter

$$\begin{split} \frac{\partial \hat{\rho}_1}{\partial t} + c_s \frac{\partial \hat{\rho}_1}{\partial x} + \Big[\frac{(2 - c_s^{-2})}{2} - \Big(\frac{27g^2 \,\rho_0^2}{8m_G^2} \Big) \frac{(2c_s^{-2} - 1)}{2A} - \frac{\pi^{2/3} \rho_0^{-4/3}}{A} \Big(c_s^{-2} - \frac{1}{6} \Big) \Big] c_s \hat{\rho}_1 \frac{\partial \hat{\rho}_1}{\partial x} \\ + \Big[\frac{9g^2 \,\rho_0^{-2} c_s}{8m_G^4 A} \Big] \frac{\partial^3 \hat{\rho}_1}{\partial x^3} = 0 \\ \end{split}$$
 KdV soliton

$$\begin{cases} A = \left(\frac{27g^2 \rho_0^2}{8m_G^2}\right) + \pi^{2/3} \rho_0^{4/3} \\ c_s^2 = \frac{\left(\frac{27g^2 \rho_0^2}{8m_G^2}\right) + \pi^{2/3} \rho_0^{4/3}}{\left(\frac{27g^2 \rho_0^2}{8m_G^2}\right) + 3\pi^{2/3} \rho_0^{4/3}} \end{cases}$$

Fogaca, FSN, PLB (2011) arXiv:1012.5266 Fogaca, FSN, Ferreira Filho PRD (2011) arXiv:1106.5959

KdV soliton

$$\hat{\rho}_1(x,t) = \frac{3(u-c_s)}{\alpha c_s} \operatorname{sech}^2 \left[\sqrt{\frac{(u-c_s)}{4\beta}} (x-ut) \right]$$

$$\lambda = \sqrt{\frac{4\beta}{(u - c_s)}} = \sqrt{\frac{36g^2 \,\rho_0^2 c_s}{(u - c_s)m_G^4 A}}$$

Breaking wave

$$\frac{\partial \hat{\rho}_1}{\partial t} + c_s \frac{\partial \hat{\rho}_1}{\partial x} + \frac{2}{3} c_s \hat{\rho}_1 \frac{\partial \hat{\rho}_1}{\partial x} = 0$$

Breaking waves in hot quark matter

Localized structures live for a long time

Summary

Analytical studies complement numerical simulations There may be not-so-small perturbations in QGP We need to go beyond linearization (RPM) Nonlinear equations: KdV, Breaking wave, Burgers... KdV solitons may exist in hadronic matter and in QGP Localized structures live long and might be observable Relativistic Navier-Stokes leads to the Burger's equation

> Fogaca, FSN, Ferreira Filho NPA (2012) arXiv:1201.0943

Takeshi:

thanks for (30 years of) your attention!

$$\frac{\partial \mathcal{L}}{\partial \eta_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \eta_i)} + \partial_\nu \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \partial_\nu \eta_i)} \right] = 0$$

$$\mathcal{B} = \frac{37}{90}\pi^2 (T_c)^4$$

$$m_G \to \infty$$
 $\qquad \frac{\partial \hat{\rho}_1}{\partial t} + c_s \frac{\partial \hat{\rho}_1}{\partial x} + \frac{2}{3} c_s \hat{\rho}_1 \frac{\partial \hat{\rho}_1}{\partial x} = 0$

Breaking wave

$$T^{\mu\nu} = \frac{\partial \mathcal{L}^*}{\partial (\partial_\mu \eta_i)} (\partial^\nu \eta_i) - g^{\mu\nu} \mathcal{L}^* - \left[\partial_\beta \frac{\partial \mathcal{L}^*}{\partial (\partial_\mu \partial_\beta \eta_i)} \right] (\partial^\nu \eta_i) + \frac{\partial \mathcal{L}^*}{\partial (\partial_\mu \partial_\beta \eta_i)} (\partial_\beta \partial^\nu \eta_i)$$

$$\implies \qquad \qquad \varepsilon = < T_{00} > \qquad p = \frac{1}{3} < T_{ii} >$$

$$\begin{cases} \nabla^2 V_0 = \mathbf{0} \longrightarrow V_0 = \frac{g_V}{m_V^2} \rho_B \\ V_0 = \frac{g_V}{m_V^2} \rho_B \longrightarrow \nabla^2 V_0 = \frac{g_V}{m_V^2} \nabla^2 \rho_B \longrightarrow -\vec{\nabla}^2 V_0 + m_V^2 V_0 = g_V \bar{\psi} \gamma^0 \psi \\ \downarrow \\ V_0 = \frac{g_V}{m_V^2} \rho_B + \frac{g_V}{m_V^4} \vec{\nabla}^2 \rho_B \end{cases}$$

$$\left\{ \varepsilon = \frac{g_V^2}{2m_V^2} \rho_B^2 + \frac{g_V^2}{2m_V^4} \rho_B \vec{\nabla}^2 \rho_B + \dots \right.$$

Nonlinear wave equations

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{(\varepsilon + p)\gamma^2} \Big(\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\Big) \qquad \qquad \text{Euler}$$

EOS:
$$p = c_s^2 \varepsilon \longrightarrow \vec{\nabla} p = c_s^2 \vec{\nabla} \varepsilon$$

If:
$$\varepsilon \propto ... + ... \vec{\nabla}^2 \rho_B \longrightarrow \vec{\nabla} p \propto ... + ... \vec{\nabla} (\vec{\nabla}^2 \rho_B) ... +$$

$$\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} + \beta \frac{\partial^3 \rho_1}{\partial x^3} = 0 \qquad \qquad \text{Korteweg - de Vries (KdV)}$$

If:

$$\nabla^2 \dots = 0$$

$$\frac{\partial \rho_1}{\partial t} + \alpha \rho_1 \frac{\partial \rho_1}{\partial x} = 0$$

Breaking wave equation

KdV soliton

$$\hat{\rho}_1(x,t) = \frac{3(u-c_s)}{\alpha c_s} \operatorname{sech}^2 \left[\sqrt{\frac{(u-c_s)}{4\beta}} (x-ut) \right]$$

$$\lambda = \sqrt{\frac{4\beta}{(u - c_s)}} = \sqrt{\frac{36g^2 \,\rho_0^2 c_s}{(u - c_s)m_G^4 A}}$$

The Quark Gluon Plasma

2004: Discovery of the "perfect fluid"

(Elliptic flow and jet quenching)"The first act of hydrodynamics": the fluid

2005: Evidence of Mach cones in the QGP ("Double bump" structure in the "away side jets") "The second act of hydrodynamics": waves in the fluid

E. Shuryak

Perturbations and waves in the QGP

Perturbations from the initial conditions

"Glasma" (CGC) generates "flux tubes" Fireball + flux tubes ?

Expansion of tubes in viscous hydrodynamics

Fogaça, Navarra, Ferreira Filho, Nucl. Phys. A887 (2012) 22

Non-linear perturbations in the relativistic Navier - Stokes equation

Relativistic Viscous Hydrodynamics

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{(\varepsilon + p)\gamma^2} \Big(\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\Big)$$
 Perfect

$$\begin{aligned} & (\varepsilon + p)\gamma^{2} \left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \vec{v} \frac{\partial p}{\partial t} + \vec{\nabla} p & \text{Viscous} \\ & -\eta \vec{v} \left\{ \partial_{\mu} \partial^{\mu} \gamma + \partial_{\mu} \frac{\partial u^{\mu}}{\partial t} - \partial_{\mu} \left[\gamma \left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla} \right) (\gamma u^{\mu}) \right] \right\} \\ & - \vec{v} \left(\zeta - \frac{2}{3} \eta \right) \frac{\partial}{\partial t} \left[\frac{\partial \gamma}{\partial t} + \vec{\nabla} \cdot (\gamma \vec{v}) \right] + \vec{v} \left(\zeta - \frac{2}{3} \eta \right) \partial_{\mu} \left\{ \gamma u^{\mu} \left[\frac{\partial \gamma}{\partial t} + \vec{\nabla} \cdot (\gamma \vec{v}) \right] \right\} \\ & + \eta \left\{ \partial_{\mu} \partial^{\mu} (\gamma \vec{v}) - \partial_{\mu} \vec{\nabla} u^{\mu} - \partial_{\mu} \left[\gamma \left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla} \right) (\gamma \vec{v} u^{\mu}) \right] \right\} \\ & - \left(\zeta - \frac{2}{3} \eta \right) \vec{\nabla} \left[\frac{\partial \gamma}{\partial t} + \vec{\nabla} \cdot (\gamma \vec{v}) \right] - \left(\zeta - \frac{2}{3} \eta \right) \partial_{\mu} \left\{ \gamma \vec{v} u^{\mu} \left[\frac{\partial \gamma}{\partial t} + \vec{\nabla} \cdot (\gamma \vec{v}) \right] \right\} = 0 \end{aligned}$$

Relativistic Navier-Stokes equation

Entropy

$$\frac{\partial s}{\partial t} + \gamma^2 v s \left(\frac{\partial v}{\partial t} + \vec{v} \cdot \vec{\nabla} v \right) + \vec{\nabla} \cdot (s\vec{v}) = 0$$
 Perfect

$$\begin{split} \gamma \frac{\partial s}{\partial t} &+ \gamma \vec{\nabla} s \cdot \vec{v} + s \frac{\partial \gamma}{\partial t} + s \vec{\nabla} \gamma \cdot \vec{v} + \gamma s \vec{\nabla} \cdot \vec{v} \\ &= -\frac{\eta}{T} \left(\frac{\partial \gamma}{\partial t} \right)^2 - 2 \frac{\eta}{T} \left[\vec{\nabla} \gamma \cdot \frac{\partial}{\partial t} (\gamma \vec{v}) \right] - \frac{\eta}{T} \left(\partial^i u^j \right) \partial_j u_i \\ &+ \frac{1}{T} \left(\frac{2}{3} \eta + \zeta \right) \left[\frac{\partial \gamma}{\partial t} + \gamma \vec{\nabla} \cdot \vec{v} + \vec{\nabla} \gamma \cdot \vec{v} \right]^2 \end{split}$$
 Viscous

- η = shear viscosity
- ζ = bulk viscosity

Equation of State: MIT Bag Model

$$\begin{split} & \left\{ \begin{array}{l} \varepsilon = \mathcal{B} + \frac{\gamma_G}{(2\pi)^3} \int d^3k \ k \ (e^{k/T} - 1)^{-1} + \frac{\gamma_Q}{(2\pi)^3} \int d^3k \ k \ [n_{\vec{k}} + \bar{n}_{\vec{k}}] \\ & p = -\mathcal{B} + \frac{1}{3} \left\{ \frac{\gamma_G}{(2\pi)^3} \int d^3k \ k \ (e^{k/T} - 1)^{-1} + \frac{\gamma_Q}{(2\pi)^3} \int d^3k \ k \left[n_{\vec{k}} + \bar{n}_{\vec{k}} \right] \right\} \\ & c_S^2 = \frac{\partial p}{\partial \varepsilon} = \frac{1}{3} \\ & \varepsilon = \frac{37}{30} \pi^2 (T^4 + T_B^4) \qquad \mathcal{B} = \frac{37}{30} \pi^2 (T_B)^4 \\ & s = 4 \frac{37}{90} \pi^2 T^3 \\ & s = 4 \frac{37}{90} \pi^2 \left[\frac{30}{37\pi^2} (\varepsilon - \mathcal{B}) \right]^{3/4} \end{split}$$

Define dimensionless variables:

$$\hat{\varepsilon} = \frac{\varepsilon}{\varepsilon_0}$$
 $\hat{v} = \frac{v}{c_s}$ $\hat{v}_r = \frac{v_r}{c_s}$, $\hat{v}_z = \frac{v_z}{c_s}$

Introduce "stretched" coordinates

$$R = \frac{\sigma^{1/2}}{L}(r - c_s t), \qquad Z = \frac{\sigma}{L} z, \qquad T = \frac{\sigma^{3/2}}{L} c_s t$$

Expand Euler and Continuity equations around equilibrium:

$$\begin{cases}
\hat{\varepsilon} = 1 + \sigma \varepsilon_1 + \sigma^2 \varepsilon_2 + \sigma^3 \varepsilon_3 + \cdots \\
\hat{v}_r = \sigma v_{r_1} + \sigma^2 v_{r_2} + \sigma^3 v_{r_3} + \cdots \\
\hat{v}_z = \sigma^{3/2} v_{z_1} + \sigma^{5/2} v_{z_2} + \sigma^{7/2} v_{z_3} + \cdots
\end{cases}$$

Obtain non-linear wave equations and go back to original coordinates

$$\frac{\partial}{\partial r} \left\{ \frac{\partial \hat{\varepsilon}_1}{\partial t} + c_s \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{c_s}{2} \left[1 + \left(\frac{T_B}{T_0} \right)^4 \right] \hat{\varepsilon}_1 \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{\hat{\varepsilon}_1}{2t} \right\} + \frac{c_s}{2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial z^2} = 0$$
perfect

$$\frac{\partial}{\partial r} \left\{ \frac{\partial \hat{\varepsilon}_{1}}{\partial t} + c_{s} \frac{\partial \hat{\varepsilon}_{1}}{\partial r} + \frac{c_{s}}{2} \left[1 + \left(\frac{T_{B}}{T_{0}} \right)^{4} \right] \hat{\varepsilon}_{1} \frac{\partial \hat{\varepsilon}_{1}}{\partial r} + \frac{\hat{\varepsilon}_{1}}{2t} - \frac{1}{T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s} \right) \frac{\partial^{2} \hat{\varepsilon}_{1}}{\partial r^{2}} \right\} + \frac{c_{s}}{2} \frac{\partial^{2} \hat{\varepsilon}_{1}}{\partial z^{2}} = 0 \qquad \text{viscous}$$

 $\hat{\varepsilon}_1 \equiv \sigma \varepsilon_1$

Background expansion: Bjorken cooling

$$\tau = \sqrt{t^2 - r^2}$$

Numerical solutions

 $\frac{c_s}{2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial z^2} = 0$

longitudinal invariance

$$\frac{\partial \hat{\varepsilon}_1}{\partial t} + c_s \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{c_s}{2} \left[1 + \left(\frac{T_B}{T_0} \right)^4 \right] \hat{\varepsilon}_1 \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{\hat{\varepsilon}_1}{2t} = 0 \qquad \text{perfect}$$

$$\frac{\partial \hat{\varepsilon}_1}{\partial t} + c_s \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{c_s}{2} \left[1 + \left(\frac{T_B}{T_0}\right)^4 \right] \hat{\varepsilon}_1 \frac{\partial \hat{\varepsilon}_1}{\partial r} + \frac{\hat{\varepsilon}_1}{2t} = \frac{1}{T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s}\right) \frac{\partial^2 \hat{\varepsilon}_1}{\partial r^2}$$
viscous

Burgers equation

Initial condition
$$\hat{\varepsilon}_1 = Ae^{-r^2/r_0^2}$$
 $\frac{\eta}{s} = 0.16$

"Tube" becomes a "ring"

Fogaça, Navarra, Ferreira Filho, Nucl. Phys. A887 (2012) 22

"Thick tube"

"Thin" and more energetic

Estimating the Laplacian :

We calculate the energy momentum tensor and the equation of state

$$\begin{split} \varepsilon &= \frac{1}{2} \bigg\{ \frac{\partial}{\partial t} \Big[\frac{(M - M^*)}{g_S} \Big] \bigg\}^2 + \frac{1}{2} \bigg\{ \vec{\nabla} \Big[\frac{(M - M^*)}{g_S} \Big] \bigg\}^2 + \frac{m_S^2}{2g_S^2} (M - M^*)^2 + \\ &+ b \frac{(M - M^*)^3}{3g_S^3} + c \frac{(M - M^*)^4}{4g_S^4} + \frac{g_V^2}{2m_V^2} \rho_B^2 \Big(+ \frac{g_V^2}{2m_V^4} \rho_B \vec{\nabla}^2 \rho_B + \\ &+ \frac{\gamma_s}{(2\pi)^3} \int_0^{k_F} d^3 k (\vec{k}^2 + M^{*2})^{1/2} \end{split}$$

"Thick" and more energetic

What is important for the evolution of the tubes

Viscosity: spreads the energy faster and damps the tube

Initial radius: larger tubes live longer

Initial amplitude: higher tubes become unstable sooner

Background temperature

Background expansion

Analytical solution

Full 3-d problem:
$$\hat{\varepsilon}_1 = \hat{\varepsilon}_1 (r, \phi, z, t)$$

$$\frac{\partial}{\partial r} \left\{ \frac{\partial \hat{\varepsilon}_1}{\partial t} + c_s \frac{\partial \hat{\varepsilon}_1}{\partial r} + \alpha \hat{\varepsilon}_1 \frac{\partial \hat{\varepsilon}_1}{\partial r} - \nu \frac{\partial^2 \hat{\varepsilon}_1}{\partial r^2} + \frac{\hat{\varepsilon}_1}{2t} \right\} + \frac{1}{2c_s t^2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial \varphi^2} + \frac{c_s}{2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial z^2} = 0$$
$$\alpha \equiv \frac{c_s}{2} \left[1 + \left(\frac{T_B}{T_0}\right)^4 \right] \qquad \nu \equiv \frac{1}{2T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s}\right)$$

$$\hat{\varepsilon}_{1}(r,z,\varphi,t) = \frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1} \\ -\frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1} \times \\ \times \tanh\left\{\delta\left[Ar + Bz - A\frac{c_{s}\varphi^{2}t}{2} - \left(Ac_{s} + \frac{B^{2}c_{s}}{2A} + \frac{\delta A^{2}}{T_{0}}\left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right)\right)t\right]\right\}$$

$$\frac{\partial F}{\partial t} + \alpha F \frac{\partial F}{\partial x} = 0$$

 $F(x,t) = F_0 + \sigma F_1(x,t) + \sigma^2 F_2(x,t) + \sigma^3 F_3(x,t) + \dots$

$$\sigma \frac{\partial F_1}{\partial t} + \sigma^2 \frac{\partial F_2}{\partial t} + \sigma \alpha F_0 \frac{\partial F_1}{\partial x} + \sigma^2 \alpha F_0 \frac{\partial F_2}{\partial x} + \sigma^2 \alpha F_1 \frac{\partial F_1}{\partial x} + \dots = 0$$
$$\frac{\partial}{\partial t} = \sigma^n \frac{\partial}{\partial \tau} \qquad \frac{\partial}{\partial x} = \sigma^m \frac{\partial}{\partial \xi}$$

$$\sigma^{n+1}\frac{\partial F_1}{\partial \tau} + \sigma^{n+2}\frac{\partial F_2}{\partial \tau} + \sigma^{m+2}\alpha F_1\frac{\partial F_1}{\partial \xi} + \sigma\alpha F_0\left[\sigma^m\frac{\partial F_1}{\partial \xi} + \sigma^{m+1}\frac{\partial F_2}{\partial \xi}\right] = 0$$

 $n+1 = m+2 \qquad \qquad n+2 \ge 3$

 $\label{eq:generalized_states} {\rm m}\, \vec{\rm a} = \vec{\rm F} \qquad \qquad \frac{\partial F_1}{\partial \tau} + \alpha F_1 \frac{\partial F_1}{\partial \xi} = 0 \qquad \qquad \xi = \sigma^{1/2} x \\ \tau = \sigma^{3/2} t$

H. Leblond, J. Phys. B: At. Mol. Opt. Phys. 41, 043001 (2008).

- [16] H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
- [17] R.C. Davidson, "Methods in Nonlinear Plasma Theory", Academic Press, New York an London, (1972).
- [18] For a recent review and a historical account see: H. Leblond, J. Phys. B: At. Mol. Opt. Phys. 41, 043001 (2008).
- [19] Lokenath Debnath, "Nonlinear Partial Differential Equations for Scientists and Engineers", third edition, Birkhäuser, USA, (2011).

Initial energy density distribution in the transverse plane

Do these structures survive the expansion?

Perturbations caused by flux tubes

Expanding and hadronizing QGP: transverse view

anisotropic distribution

How to study the evolution of these tubes ?

Elliptic flow

Different pressure gradients deform the transverse momentum distribution

Hydrodynamics describes the data!

RHIC

LHC

Snellings, NJP (2011)

Mach cones

If the pulse lives longer more energy goes foreward and less energy goes to the conical wave !

I- Conical waves from supersonic motion

Introduce "stretched" coordinates

$$\begin{cases} \xi = \sigma^{1/2} \frac{(x - c_s t)}{R} \\ \tau = \sigma^{3/2} \frac{c_s t}{R} \end{cases}$$

Rewrite Euler and continuity eqs. as series of powers of σ

$$\sigma(\ldots) + \sigma^2(\ldots) + \sigma^3(\ldots) + \ldots = 0$$
 each (\ldots) vanishes

Continuity equation:

$$\sigma \left\{ \frac{\partial v_1}{\partial \xi} - \frac{\partial \rho_1}{\partial \xi} \right\} + \sigma^2 \left\{ \frac{\partial v_2}{\partial \xi} - \frac{\partial \rho_2}{\partial \xi} + \frac{\partial \rho_1}{\partial \tau} + \rho_1 \frac{\partial v_1}{\partial \xi} + v_1 \frac{\partial \rho_1}{\partial \xi} - c_s^2 v_1 \frac{\partial v_1}{\partial \xi} \right\} = 0$$

Obtain non-linear wave equations and go back to original coordinates

Define dimensionless variables:

$$\hat{\rho} = \frac{\rho}{\rho_0} \qquad \hat{\varepsilon} = \frac{\varepsilon}{\varepsilon_0} \qquad \hat{v} = \frac{v}{c_S}$$

Expand Euler and Continuity equations around equilibrium:

$$\hat{\rho} = 1 + \sigma \rho_1 + \sigma^2 \rho_2 + \dots \qquad \sigma < 1$$
$$\hat{\varepsilon} = 1 + \sigma \varepsilon_1 + \sigma^2 \varepsilon_2 + \dots \qquad \hat{\varepsilon} = 1 + \hat{\varepsilon}_1 + \dots$$
$$\hat{v} = \sigma v_1 + \sigma^2 v_2 + \dots \qquad \varepsilon_0 \hat{\varepsilon}_1 = \delta \varepsilon(x, y, z, t)$$

$$n_{\vec{k}} \equiv n_{\vec{k}}(T) = \frac{1}{1 + e^{(k - \frac{1}{3}\mu)/T}} \qquad \bar{n}_{\vec{k}} \equiv \bar{n}_{\vec{k}}(T) = \frac{1}{1 + e^{(k + \frac{1}{3}\mu)/T}}$$

 $\gamma_G = 2$ (polarizations) × 8(colors) = 16 $\gamma_Q = 2$ (spins) × 2(flavors) × 3(colors) = 12 3-dimensional cylindrical case: (r, φ, z, t)

Stretched coordinates:

$$R = \frac{\sigma^{1/2}}{L} (r - c_s t) , \quad \Phi = \sigma^{-1/2} \varphi , \quad Z = \frac{\sigma}{L} z , \quad T = \frac{\sigma^{3/2}}{L} c_s t$$

$$\hat{\varepsilon} = 1 + \sigma \varepsilon_1 + \sigma^2 \varepsilon_2 + \sigma^3 \varepsilon_3 + \dots$$

and expansions:

$$\hat{v}_r = \sigma v_{r_1} + \sigma^2 v_{r_2} + \sigma^3 v_{r_3} + \dots$$
$$\hat{v}_{\varphi} = \sigma^{3/2} v_{\varphi_1} + \sigma^{5/2} v_{\varphi_2} + \sigma^{7/2} v_{\varphi_3} + \dots$$
$$\hat{v}_z = \sigma^{3/2} v_{z_1} + \sigma^{5/2} v_{z_2} + \sigma^{7/2} v_{z_3} + \dots$$

The general nonlinear wave equation:

$$\frac{\partial}{\partial r} \left\{ \frac{\partial \hat{\varepsilon}_1}{\partial t} + c_s \frac{\partial \hat{\varepsilon}_1}{\partial r} + \alpha \hat{\varepsilon}_1 \frac{\partial \hat{\varepsilon}_1}{\partial r} - \nu \frac{\partial^2 \hat{\varepsilon}_1}{\partial r^2} + \frac{\hat{\varepsilon}_1}{2t} \right\} + \frac{1}{2c_s t^2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial \varphi^2} + \frac{c_s}{2} \frac{\partial^2 \hat{\varepsilon}_1}{\partial z^2} = 0$$

Where:
$$\alpha \equiv \frac{c_s}{2} \left[1 + \left(\frac{T_B}{T_0} \right)^4 \right] \qquad \nu \equiv \frac{1}{2T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s} \right)$$

has four analytical solutions:

$$\hat{\varepsilon}_{1}(r,z,\varphi,t) = \frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1}$$
$$-\frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1} \times$$
$$\times tanh \left\{\delta \left[Ar + Bz - A\frac{c_{s}\varphi^{2}t}{2} - \left(Ac_{s} + \frac{B^{2}c_{s}}{2A} + \frac{\delta A^{2}}{T_{0}}\left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right)\right)t\right]\right\}$$

$$\begin{aligned} \hat{\varepsilon}_1(r,z,\varphi,t) &= -\frac{2\delta A}{c_s T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s}\right) \left[1 + \left(\frac{T_B}{T_0}\right)^4\right]^{-1} \\ &- \frac{2\delta A}{c_s T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s}\right) \left[1 + \left(\frac{T_B}{T_0}\right)^4\right]^{-1} \times \\ &\times tanh \left\{\delta \left[Ar + Bz - A \frac{c_s \varphi^2 t}{2} - \left(Ac_s + \frac{B^2 c_s}{2A} - \frac{\delta A^2}{T_0} \left(\frac{\zeta}{s} + \frac{4}{3} \frac{\eta}{s}\right)\right)t\right]\right\}\end{aligned}$$

$$\hat{\varepsilon}_{1}(r,z,\varphi,t) = \frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1}$$
$$-\frac{2\delta A}{c_{s}T_{0}} \left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right) \left[1 + \left(\frac{T_{B}}{T_{0}}\right)^{4}\right]^{-1} \times$$
$$\times \coth\left\{\delta\left[Ar + Bz - A\frac{c_{s}\varphi^{2}t}{2} - \left(Ac_{s} + \frac{B^{2}c_{s}}{2A} + \frac{\delta A^{2}}{T_{0}}\left(\frac{\zeta}{s} + \frac{4}{3}\frac{\eta}{s}\right)\right)t\right]\right\}$$

