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Initial State Fluctuations
Temperature fluctuations from the 

early universe
Energy density fluctuations from 2 

highly excited colliding nuclei

Multipole moment analysis Anisotropic flow analysis

→ Precise knowledge about the 
matter content in the universe

→Precise knowledge about QCD 
matter under extreme conditions ?
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NEXSpheRIO Results

• Early results on initial state 
fluctuations

• Development of tube model 

Andrade et al, PRL101,112301,2008 



Third Harmonic Coefficient
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Triangular Flow

• Fluctuations introduce higher order flow coefficients that have been 
observed at the RHIC and LHC experiments (see QM 2011)

• How can we quantitatively learn something from this observable? 
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Initial State Fluctuations

B. Alver and G. Roland, PRC 2010; NEXspheRIO, PRL 103,242301, 2009; P. Sorensen, JPG, 37, 
094011,2010 ...  and many more, results taken from PHENIX in arXiv: 1105.3928 
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Constraining the Initial State Profile
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• First principle treatment of non-equilibrium QCD is the ultimate 
goal

• Going backward from the measured final state distributions to 
confirm theoretical predictions requires
–  Understanding of other sources of fluctuations in the evolution
–  Elimination of model dependencies 

• Look at experimental data in the final state and constrain the 
structures of the needed initial state profile

• Establish connection between the 
found features in terms of 
–  Shape of the profile
–  Amount of fluctuations

• and properties of non-equilibrium QCD
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Time Evolution of Heavy Ion Collisions
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Hybrid approaches are very successful for the 
description of the dynamics

• Initial state is influenced by:
Degrees of freedom; Interaction mechanism; Thermalization

1x 10-23 s 10 x 10-23 s 30 x 10-23 s 

Nuclei at 99 % 
speed of light

Quark Gluon Plasma Measurable Fragments 
in the detector

Hadronic 
Rescattering

Nonequilibrium 
initial state 
dynamics

Relativistic 
Hydrodynamics Hadron Transport



Initial State Coordinate Space Asymmetry
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Azimuthal Decomposition

• Characterization of the 
initial state profile in terms 
of Fourier coefficients

• Odd harmonics vanish for 
symmetric initial conditions

• The event planes are not 
necessarily independent

• Is that enough to capture 
all structures?
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Current Status of IC Description
• Parametrizations: 

– Monte Carlo Glauber + improvements

–  CGC based models: MC-KLN, IP-Glasma ...
• Dynamic Approaches:

– NEXUS, UrQMD, AMPT, EPOS, ... 

• Qualitative Studies: 
– Color field fluctuations
–  AdS/CFT colliding sheets

• Many more... 
• How can we characterize the 

differences and similarities in a more 
complete way? 
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Glasma, IP Sat Model

MC Glauber Model
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• Idea: Make use of the radial direction in addition to the 
azimuthal direction in coordinate space

• Method: Generate many initial energy distributions and 
subtract the average -> only fluctuations are quantified

• Basis functions:  

• Any function f: 

• with generalized coefficients

• Angular and radial structures
are captured
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2d Fourier Decomposition
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C. Coleman-Smith, HP et al,J. Phys G40 (2013) 095103



•The original energy density distribution can be 
reconstructed with n<8 and |m|<8

• Energy density profile is represented by ~35 numbers
• Norms are useful to condense information
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Application to Single Event
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Original Reconstructed |Am,n|
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UrQMD Example 
• Systematic study in a hadronic transport approach

• Averages over the initial state profile for different numbers of 
events lead to different granularities
– Overall features of the initial state profile are  preserved
– Direct connection to initial state dynamics lost
– How does the 2d decomposition distinguish ? 
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H
.P. et al, J.Phys.G

 G
39 (2012) 055102

n=25n=1 n=5



M1 norm:                                            → contains angular gradients

H1 norm:                                         → Sobolev norm, contains             
                                                           radial gradients

L2 norm:                                      → total mass of the function
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Properties of Norms
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Hadron-based models very similar; larger radial gradients in partonic model
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Roughness Measure
• Dividing out the total mass of the event provides a scale 

invariant measure of the behavior of the gradients

• All UrQMD lines and Glauber collapse to one curve, but 
MC-KLN is clearly different → Distinguish partonic and 
hadronic initial degrees of freedom
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What next?
• The 2d Fourier decomposition:

– Applicable to analytical calculations and Monte Carlo 
simulations 

– Provides a good tool for apples-to-apples comparison 
of initial state models by extracting essential features, 
differences or similarities

– Easy to generalize to 3D and other quantities, e.g. 
initial velocity profiles

• To do: 
– Connect these norms and coefficients to final state 

observables
– → Constrain initial degrees of freedom and their 

interactions
14

see also recent study by Wiedemann, Floerchinger
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Lower Beam Energies
• Differences in the evolution at lower beam energies:

– Finite net-baryochemical potential needs to be taken into 
account in equation of state 

– Conserved quantum numbers need to be considered in evolution
– Dissipative effects grow at lower energies (hadronic evolution 

gains importance)
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J. Steinheimer, M. Bleicher PRC84 (2011)  

Default Hybrid
Core-Corona
plain UrQMD

• Opportunity to extract temperature and density dependence of 
viscosity

• How far down does the hybrid approach work? 
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UrQMD hybrid
• Initial State: 

–  Initialization of two nuclei
–  Non-equilibrium hadron-string dynamics
–  Mapping of energy, momentum and net baryon density with 3d 

Gaussians + instant thermalization
–  Initial state fluctuations are included naturally

• 3+1d Hydro +EoS:
–  SHASTA ideal relativistic fluid dynamics
–  Net baryon density is explicitly propagated
–  Chiral model + Polyakov loop, fitted to lattice and nuclear ground 

state properties, applicable in whole T-mu_b plane
• Final State: 

–  Cooper-Frye switching transition
–  Chemical and kinetic freeze-out with hadron cascade
–  Full phase-space information of final particles
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H.P. et al, PRC78 (2008) 044901
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Differential Elliptic Flow

• v2(pT) independent of beam energies
• Slight overestimation due to ideal hydro
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J. Auvinen, HP arXiv:1306.0106

http://arxiv.org/abs/arXiv:1306.0106
http://arxiv.org/abs/arXiv:1306.0106
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Viscous Hybrid Approach

• 3+1d viscous hydro + UrQMD hybrid approach
• EoS at finite baryo-chemical potential

• Spectra and elliptic flow favor η/s ~ 0.2
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Y. Karpenko, P. Huovinen, HP, M. Bleicher, SQM 2013

Elab=160 AGeV
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Excitation Function
• Contribution of different stages to integrated v2

• Transport compensates for decreasing hydro phase at 
lower beam energies

• Integrated elliptic flow overestimated due to missing 
viscosity in hydrodynamic evolution
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J. Auvinen, HP arXiv:1306.0106

http://arxiv.org/abs/arXiv:1306.0106
http://arxiv.org/abs/arXiv:1306.0106
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v3 Excitation Function

• Triangular flow in central collisions matches STAR data
• More peripheral collisions: v3 goes to zero in hybrid 

approach
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J. Auvinen, HP arXiv:1306.0106

http://arxiv.org/abs/arXiv:1306.0106
http://arxiv.org/abs/arXiv:1306.0106


Hannah Petersen RANP 2013, 24.10.13

Measuring Fluctuations
•At high energies v3 is 

equal to σv2

21

•Initial state geometry 
and fluctuations 
rather independent of 
beam energy
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Sensitivity to〈thydro〉

• v3/ε3 shows universal behaviour as a function of total 
duration of hydro phase

• v2 does not follow scaling because of transport 
contribution

22
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Conclusion
• Higher flow coefficients are sensitive to initial state 

fluctuations and viscosity
• 2D Fourier decomposition is introduced to characterize 

initial state profiles
• Beam energy dependence of elliptic and triangular 

flow explored in hybrid approach
– v2: Transport compensates for hydro at lower energies
–  v3: More sensitive to viscosity

• Outlook: 3+1D Viscous hydro+transport at finite net 
baryon density 

23

Y. Karpenko, P. Huovinen, HP, M. Bleicher, SQM 2013
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Conclusion
• Higher flow coefficients are sensitive to initial state 

fluctuations and viscosity
• 2D Fourier decomposition is introduced to characterize 

initial state profiles
• Beam energy dependence of elliptic and triangular 

flow explored in hybrid approach
– v2: Transport compensates for hydro at lower energies
–  v3: More sensitive to viscosity

• Outlook: 3+1D Viscous hydro+transport at finite net 
baryon density 
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Y. Karpenko, P. Huovinen, HP, M. Bleicher, SQM 2013

• And what about the double-hump structure??
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Double-Hump Structure

24
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Double-Hump Structure
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Potential Mach Cone Signal... 



•We wanted to see the Golden Gate Bridge, but
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WPCF/ISMD Berkeley 2007
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WPCF/ISMD Berkeley 2007
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WPCF/ISMD Berkeley 2007
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•Takeshi became creative...
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WPCF/ISMD Berkeley 2007
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•We wanted to see the Golden Gate Bridge, but
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WPCF/ISMD Berkeley 2007

25

March 2011HAPPY BIRTHDAY!

•Takeshi became creative...



Backup
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Starting Times

27
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Anisotropic Flow
Simplified picture: 

Coordinate space asymmetry 
 momentum space anisotropy

v2 =

* 
p2
x
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p2
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Anisotropic Flow
Simplified picture: 

Coordinate space asymmetry 
 momentum space anisotropy
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Including 
fluctuations in 
Event-by-event 

approaches
by MADAI.us
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Anisotropic Flow
Simplified picture: 

Coordinate space asymmetry 
 momentum space anisotropy

v2 =

* 
p2
x

� p2
y

p2
T

!+

Relativistic fluid dynamics with very low viscosity 
describes elliptic flow at RHIC (and LHC)

Including 
fluctuations in 
Event-by-event 

approaches
by MADAI.us


