New nonperturbative approach to dynamic critical phenomena

Letícia F. Palhares

Institut für Theoretische Physik, Heidelberg

In collaboration with: Jürgen Berges, David Mesterházy and Jan Stockemer [arXiv:1307.1700]

Thank you, Kodama-san!

- Undergrad Classical Mechanics lecturer
- Professor of the same group for many years

Happy birthday and many many more years to come!

Thank you, Kodama-san!

Field Theory

- Undergrad Classical Mechanics lecturer
- Professor of the same group for many years

Happy birthday and many many more years to come!

Thank you, Kodama-san!

- Field Theory Coach
 Undergrad Classical Mechanics lecturer
- Professor of the same group for many years

Happy birthday and many many more years to come!

← | →

- **Motivation:** dynamic critical phenomena + QCD Critical Point
- Real-time Nonperturbative RG framework
- Analysis of the case of a relaxational order parameter coupled to a conserved density -> Model C
- Conclusions and outlook

Motivation: why dynamic critical phenomena?

• **Dynamic** critical properties are much richer and hard to predict from the microscopic theory:

<u>Static Universality Classes</u> fully determined by symmetries and dimensionality

X

Dynamic Universality Classes require the knowledge of the relevant long wavelength dofs: order parameter(s), conserved densities + their couplings

• Wide range of applications: **universality.**

In particular: dynamical critical phenomena could be important in the CEP search in HICs

BES @ RHIC

The chiral CEP

• General features:

Second order phase transition

- \Rightarrow Diverging correlation length
- \Rightarrow Conformal invariance at criticality
- \Rightarrow large fluctuations at all scales

In HICs:

Correlations of the chiral condensate:

Hadronic medium

The chiral CEP

• <u>General features:</u>

Second order phase transition

- \Rightarrow Diverging correlation length
- \Rightarrow Conformal invariance at criticality
- \Rightarrow large fluctuations at all scales

Chiral Ph. Trans.

In HICs:

Correlations of the chiral condensate:

Hadronic medium

P. Sorensen, Quark Gluon Plasma, Vol. 4, World Scientific, arXiv:0905.0174 [nucl-ex]

CEP search in HICs

• A signature of the chiral CEP: critical correlations of the chiral condensate will be transmitted to particles coupled to the sigma field, e.g. pions ($G\sigma\pi\pi$) and nucleons $(g_N\sigma\bar{N}N)$: [Stephanov et al]

 However, the growth of the correlation length is limited in HICs: [LFP, Fraga, Kodama, JPG (2011)]
 Sizable for QCD transitions in HIC; FSS signature
 finite size effects
 Not sign of scaling in data [Fraga, LFP, Sorensen, PRC (2011)]

→ finite lifetime: how much does the correlation length grow?

 $\xi \sim t^z$

z: universal dynamic critical exponent

The Functional Renormalization Group

Microscope' with varying resolution ~1/k:

- Construction of a set of effective actions $\Gamma_{\kappa}[\varphi]$ which interpolate between the classical action $S[\varphi]$ and the full effective action $\Gamma[\varphi]$.
- The trajectory parameterized by the scale k in the effective-action space is determined by an exact renormalization group equation, which actually encodes an infinite hierarchy of coupled exact RG equations involving the n-point functions.

e.g. Scalar case:

$$\partial_{\kappa}\Gamma_{\kappa}[\varphi] = \frac{1}{2} \operatorname{Tr} \int_{q} \partial_{\kappa}R_{\kappa}(q) \left[\Gamma_{\kappa}^{(2)}[q;\varphi] + R_{\kappa}(q)\right]^{-1}$$

• At finite κ , the interpolating theory presents a suppression of IR modes, being totally finite. The renormalization in this context is implicitly contained in the initial conditions of the flow.

FRG is a practical tool only if a sensible truncation is implemented!

(= gives a description of the ingredients you are interested in and at least some control of the approximation)

 $\partial_{\kappa} R_{\kappa}(q)$

Real-time FRG

 To describe dynamic properties (even close to thermal equilibrium) a real-time technique is needed.

Closed time path

 Forward and backward correlations distinguished
 F = ⟨{φ, φ}⟩ : statistical correlator
 ρ = ⟨[φ, φ]⟩ : spectral function

 C_β : initial density matrix in equilibrium

Fluctuation-Dissipation Relation: $iF^{(eq)} = \left(\frac{1}{2} + n_{BE}\right)\rho^{(eq)}$

FRG on the CTP:

- matrix structure due to doubling of degrees of freedom
- built at the propagator level (instead of effective action) fully in terms of commutators (using FDR).

Model C: coupling to conserved density

• Relaxational dynamics of an N-component order parameter coupled to a conserved density:

$$\begin{split} \frac{\partial}{\partial t}\varphi_{a}(x,t) &= -\Omega \frac{\delta \mathcal{H}[\varphi,\varepsilon]}{\delta \varphi_{a}(x,t)} + \eta_{a}(x,t) \text{ Noise} \\ \frac{\partial}{\partial t}\varphi_{a}(x,t) &= \Omega_{\varepsilon}\nabla^{2}\frac{\delta \mathcal{H}[\varphi,\varepsilon]}{\delta \varepsilon(x,t)} + \zeta(x,t) \\ \mathcal{H} &= \int d^{d}x \left\{ \frac{1}{2} \left(\nabla \varphi\right)^{2} + \frac{1}{2}\bar{m}^{2}\varphi^{2} + 3\frac{\bar{\lambda}}{4!} \left(\varphi^{2}\right)^{2} + \frac{1}{2}\varepsilon^{2} + \frac{1}{2}\bar{\gamma}\varepsilon\varphi^{2} \right\} \end{split}$$

• Equivalent to the variational principle of an MSR action:

$$S = \int_{[t_0,\infty)} d^d x \, dt \left\{ \tilde{\varphi}_a \left(\Omega^{-1} \frac{\partial}{\partial t} \varphi_a + \frac{\delta \mathcal{H}}{\delta \varphi_a} \right) - \Omega^{-1} \, \tilde{\varphi}^2 + \tilde{\varepsilon} \left(\Omega_{\varepsilon}^{-1} \frac{\partial}{\partial t} \varepsilon - \nabla^2 \frac{\delta \mathcal{H}}{\delta \varepsilon} \right) + \Omega_{\varepsilon}^{-1} \, \tilde{\varepsilon} \nabla^2 \tilde{\varepsilon} \right\}$$

- quadratic in ε: auxiliary field that encodes complicated momentum-dependent interactions in a microscopic theory for the field φ.
- may in principle be obtained from a microscopic theory on the CTP

Ansatz for the FRG flowing action

Flow equations

$$\partial_{\kappa}\Gamma_{\kappa}[\varphi] = \frac{1}{2} \operatorname{Tr} \int_{q} \partial_{\kappa}R_{\kappa}(q) \left[\Gamma_{\kappa}^{(2)}[q;\varphi] + R_{\kappa}(q) \right]^{-1} \left[\begin{array}{c} \\ \end{array} \right]_{\phi} + \left[\begin{array}{c} \\ \end{array} \right]_{\phi} + \left[\begin{array}{c} \\ \end{array} \right]_{\varepsilon} + \left[$$

 The 2-point correlation functions receive contribution from >50 diagrams, but the nontrivial (and new) ones are the cuts of the following one-loop diagrams:

- Statics is unchanged!
- Fixed point solution: e.g. kinetic parameter

$$\kappa = \frac{1}{1 + \frac{Z_{\epsilon}}{\Omega Z}} \qquad \begin{bmatrix} \text{Relaxation rate} & \gg & \text{Diffusion rate of} \\ \text{of the OP} & \kappa = 0 & \text{conserved density} \\ \ll & \end{bmatrix}$$
$$\dot{\kappa} = \kappa (1 - \kappa) [\eta_{\Omega}(\kappa) - \eta + \eta_{\varepsilon}]$$

Previous results: the Model C phase diagram

• Status of the Model C dynamics phase diagram:

Previous results: the Model C phase diagram

• Status of the Model C dynamics phase diagram:

One-loop & expansion predicted 5 possible regions
30 years later: 2-loop results claim breakdown of & expansion for 2<N<4...</p>

Model C phase diagram: nonperturbative results

Conclusions and Outlook

• Dynamic critical phenomena are present in a wide variety of physical systems in Nature and experiments. In particular, they may be important in the QCD CEP search in HIC's.

• Yet, their classification is much more complicated than that of static critical phenomena: requires the knowledge of relevant IR degrees of freedom.

• Real-time FRG is a powerful nonperturbative tool which is especially suitable to describe universal phenomena in the vicinity of 2nd order phase transitions. [Canet et al, PRL (2004)]

• We have showed results for the full nonperturbative Model C phase diagram and established the existence of an anomalous scaling region and a significant change for low N's.

• The framework alows for the investigation of the transition between micro and IR physics.

• It can also treat couplings between different order parameters, as should be the case of QCD.

Thank you for your attention!

One should always be cautious with hydro...

Boat trip (ISMD 2006)