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Outline
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• Motivation: dynamic critical phenomena + QCD Critical Point

• Real-time Nonperturbative RG framework

• Analysis of the case of a relaxational order parameter coupled to a conserved density -> 
Model C

• Conclusions and outlook
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Motivation: why dynamic critical phenomena?

4

• Dynamic critical properties are much richer and hard to predict from the microscopic theory:

Static Universality Classes

 fully determined by symmetries 
and dimensionality

X

Dynamic Universality Classes
require the knowledge of the relevant 

long wavelength dofs:                     
order parameter(s), conserved densities + 

their couplings

• Wide range of applications: universality.

➡ In particular: dynamical critical 
phenomena could be important 
in the CEP search in HICs 

BES @ RHIC

CEP??
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→ ∞• General features:

• In HICs:

The chiral CEP

�σn� ∼ ξpn fn(ξ/L)Second order phase transition

⇒ Diverging correlation length
⇒ Conformal invariance at criticality
⇒ large fluctuations at all scales

Chiral Ph. Trans.

{

Hadronic medium
Tc TL
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Correlations of the chiral condensate:



Letícia F. Palhares   @ RANP 2013 / Kodama’s Fest, Sep/2013

→ ∞• General features:

• In HICs:

The chiral CEP

�σn� ∼ ξpn fn(ξ/L)Second order phase transition

⇒ Diverging correlation length
⇒ Conformal invariance at criticality
⇒ large fluctuations at all scales

Chiral Ph. Trans.

{

Hadronic medium
Tc TL

c T

�σn�

Tc TL
c T

�σn�

Correlations of the chiral condensate:



Letícia F. Palhares   @ RANP 2013 / Kodama’s Fest, Sep/2013

∼ ξ2 → ∞

CEP search in HICs

• A signature of the chiral CEP: critical correlations of the chiral condensate will 
be transmitted to particles coupled to the sigma field, e.g. pions (           ) and nucleons 
(                ):

4-point function
The 2-particle correlator measures 4-point function at q = 0 (for p != k).
Singularity appears at q = 0 due to vanishing σ screening mass mσ → 0.
(i.e., ξ = 1/mσ → ∞).

p p

k k

1
m2

σ

〈δnpδnk〉σ =
1
T

fp(1 + fp)
ωp

fk(1 + fk)
ωk

G2

m2
σ

.

Check: 〈δnpδnk〉 = 〈npnk〉 − 〈np〉〈nk〉 > 0 — as in attraction.
Attraction lowers the energy of a pair (making it more likely)
by 〈Hinteraction〉 ∼ forward scattering amplitude.

Consider baryon number susceptibility, which should diverge: χB ∼ ξ2−η

χB ∼ 〈δBδB〉σ = 〈(δNp − δNp̄ + δNn − δNn̄)2〉σ = 〈δNpδNp〉σ + . . .

Each term on r.h.s. is ∼
1

m2
σ
, ⇒ 〈δBδB〉 ∼ 1/m2

σ = ξ2.

It is enough to measure protons 〈δNpδNp〉 (Hatta, MS, PRL91:102003,2003)

Non-Gaussian fluctuations and QCD critical point – p. 8/16
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Non-Gaussian fluctuations and QCD critical point – p. 8/16

Gσππ
gNσN̄N

➡ finite size effects

• However, the growth of the correlation length is limited in HICs:

Moments of observables contd.
... and find
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2λ3
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Non-Gaussian fluctuations and QCD critical point – p. 12/16
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Non-Gaussian fluctuations and QCD critical point – p. 12/16

∼ ξ7

∼ ξ9/2Skewness:

Kurtosis:

[Stephanov et al]

Sizable for QCD transitions in HIC; FSS signature
No sign of scaling in data

➡ finite lifetime: how much does the correlation length grow?

z: universal dynamic critical exponentξ ∼ tz

[LFP, Fraga, Kodama, JPG (2011)]

[Fraga, LFP, Sorensen, PRC (2011)]
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• Construction of a set of effective actions           which interpolate 
between the classical action         and the full effective action        .

• The trajectory parameterized by the scale    in the effective-action space is determined 
by an exact renormalization group equation, which actually encodes an infinite 
hierarchy of coupled exact RG equations involving the n−point functions.

The Functional Renormalization Group

Γκ[ϕ]
Γ[ϕ]S[ϕ]

κ

e.g. Scalar case:

• At finite   , the interpolating theory presents a suppression of IR modes, being totally 
finite. The renormalization in this context is implicitly contained in the initial conditions 
of the flow.

FRG is a practical tool only if a sensible truncation is implemented!

κ

∂κΓκ[ϕ] =
1

2
Tr

�

q
∂κRκ(q)

�
Γ(2)
κ [q;ϕ] +Rκ(q)

�−1
x

∂κRκ(q)

Full propagator

(= gives a description of the ingredients you are interested in 
and at least some control of the approximation)

RG microscope with varying resolution of length scale  

                                            ~ 1/k  

Fixed point: physics looks the same for resolutions (in rescaled units) 

 scaling form, e.g. anti-commutator expectation value: 

 similarly, spectral function (commutator):  

 anomalous dimension  

Typically not for all resolutions:   IR fixed point for k  0  

 UV fixed point for k    

 occupation number exponent  

Renormalization group fixed points 

➡ ‘Microscope’ with varying resolution ~1/k:
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Real-time FRG

Solving truncated flow equations 

Example: Model A universality class (relaxational models with no conservation laws) 
Canet, Chate, J. Phys. 40 (2007) 1937 with Mesterhazy, Palhares, Stockemer in preparation 

Thermal density matrix translates with  into  imaginary  :  

Use fluctuation-dissipation relation to determine anti-commutators:  

        does not contribute to commutator flows:    !"

!"

• To describe dynamic properties (even close to thermal equilibrium) a real-time 
technique is needed.

Closed time path
➡ Forward and backward correlations distinguished

➡ Cβ : initial density matrix in equilibrium

• FRG on the CTP: 

F = �{φ,φ}�
ρ = �[φ,φ]�

: statistical correlator

: spectral function

Fluctuation-Dissipation Relation: iF (eq) =

�
1

2
+ nBE

�
ρ(eq)

‣matrix structure due to doubling of degrees of freedom

‣ built at the propagator level (instead of effective action) 
fully in terms of commutators (using FDR). 
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Model C: coupling to conserved density

reason for this uncertainty is that the physics is nonperturbative and only few theoretical

approaches apply. Previous calculations have mainly relied on the ε-expansion in d = 4 − ε

dimensions, while direct numerical simulations [231] still represent an exception. The existence

of the so-called weak, strong, and decoupled scaling regions is undebated. However, there have

been conflicting claims on quantitative properties and even on the possible existence of another

distinctive region in the phase diagram of Model C. Earlier results [40, 42, 46, 219, 220] found

evidence for such a region, however, due to a multiplicative logarithmic correction it was

unclear whether the calculated dynamic scaling persists to higher orders in the ε-expansion.

Other results to second order showed that the field-theoretic β-function for the ratio of kinetic

coefficients exhibits an essential singularity in this region [42]. It was speculated that this

property might even restore critical behavior with a dynamic scaling exponent identical to

the strong scaling z = 2 + α/ν. However, in more recent work [43, 230] this peculiar region

was discarded as an artifact of the ε-expansion, which was argued to break down in the region

where 2 < N < 4 for dimensions close to d = 4.

Here, we compute the (N, d) phase diagram for the dynamic critical behavior of Model C

using the functional renormalization group. We establish an anomalous diffusion phase with

new scaling properties: It satisfies weak scaling for 2 < N < 4 close to d = 4, however,

the conserved density diffuses only on asymptotic times. We compute the scaling exponents

characterizing the different phases as well as subleading exponents to determine their stability

properties. This presents the first determination of the dynamic critical properties of relax-

ational models in the framework of the functional RG including the dynamics of conserved

quantities. Such an analysis can be extended to investigate also other dynamic universality

classes, or even to connect the dynamic low-energy properties with the microscopic physics of

relativistic theories such as QCD.

5.1. Mesoscopic dynamics

The effective dynamics for Model C is governed by the set of Langevin-type stochastic equa-

tions

∂

∂t
ϕa(x, t) = −Ω

δH[ϕ, ε]

δϕa(x, t)
+ ηa(x, t) , (5.1)

∂

∂t
ε(x, t) = Ωε∇2 δH[ϕ, ε]

δε(x, t)
+ ζ(x, t) , (5.2)

where a = 1, . . . , N labels the field components of the order parameter field ϕa, and ε cor-

responds to the conserved density which satisfies an equation of diffusion-type. The kinetic

coefficients Ω and Ωε denote the relaxation rate and diffusion rate, respectively. The func-

tional H that essentially defines the dynamics depends both on the order parameter as well

as on the conserved density, and is given by

H =

∫
ddx

{
1

2
(∇ϕ)2 +

1

2
m̄2ϕ2 + 3

λ̄

4!

(
ϕ2

)2
+

1

2
ε2 +

1

2
γ̄εϕ2

}
. (5.3)
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• Equivalent to the variational principle of an MSR action:

ϕ ϕ

ϕ̃ ϕ

ε

ϕ̃ ϕ

Figure 5.2.: Tadpole diagrams contributing at one-loop in perturbation theory.

conjugate ε̃-field. Then, after performing the integration over the stochastic noise, we obtain

the Martin-Siggia-Rose/Janssen-de Dominicis functional integral [44–46]:

Z ∼
∫

[dϕ̃] [dϕ] [dε̃] [dε] e−S , (5.10)

where, after an appropriate rescaling of the fields ϕ̃ → Ω−1ϕ̃ and ε̃ → Ω−1
ε ε̃, we obtain the

field-theoretical classical action for Model C:

S =

∫

[t0,∞)
ddx dt

{
ϕ̃a

(
Ω−1 ∂

∂t
ϕa +

δH
δϕa

)
− Ω−1 ϕ̃2 + ε̃

(
Ω−1
ε

∂

∂t
ε−∇2 δH

δε

)
+ Ω−1

ε ε̃∇2ε̃

}
.

(5.11)

Note, that we use a slightly different convention for the conjugate fields ϕ̃ and ε̃, where one

usually considers the Wick-rotated fields on the imaginary axis, i.e., ϕ̃ → iϕ̃ and ε̃ → iε̃.

Let us now comment on the role of the functional determinant that we have neglected

so far. In fact, it plays a subtle role and controls the contributions from tadpole diagrams

that are in principle allowed by the dynamics of the vertices in the microscopic action (cor-

responding perturbative one-loop diagrams of the microscopic action are shown in Fig. 5.2).

The propagators in the closed loops corresponds to the retarded/advanced propagators in the

fields ϕ̃ and ϕ. We, see that a nonvanishing contribution from these diagrams would lead to

additional terms in the effective potential that are not present in the classical action (5.11).

In fact, if we simply neglect the functional determinant such diagrams must be taken into

account explicitly in perturbation theory, or in the ansatz for the scale-dependent effective

action for dynamic correlation functions. However, writing the determinant in the following

form

det

[(
∂

∂t
+

δ2H
δϕa(t)ϕb(t′)

)
δ(t− t′)

]
∼ exp

{

θ(0)

∫

[t0,∞)
ddx dt

δ2H
δϕa(t, x)ϕb(t, x)

δab

}

,

(5.12)

we see that it defines an additional contribution to the classical action that is proportional to

the quantity θ(0). The same type of contributions appear if the one-loop tadpole diagrams in

Fig. 5.2 are evaluated. In fact, the functional determinant (5.12) exactly cancels the tadpole

diagrams that are obtained from the interaction terms in the original action [234].

Let us point out another interpretation of this problem. It relates to the coefficient θ(0) in

(5.12). The fact that such a coefficient must appear comes from the definition of the causal

propagation forward in time, where the free propagator ∂G(0)(t− t′)/∂t = δ(t− t′) is chosen

as G(0)(t− t′) = θ(t− t′), and from the evaluation of the trace in the functional determinant,

which yields ∼ θ(0). As it stands it is an ill-defined quantity. Only a given discretization

73

‣ quadratic in ε: auxiliary field that encodes complicated momentum-dependent 
interactions in a microscopic theory for the field ϕ.

‣may in principle be obtained from a microscopic theory on the CTP

Ω: relaxation rate

Ωε: diffusion rate
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• In the deep IR limit:

dynamics

Ansatz for the FRG flowing action

k → 0

k > Λ

IR

UV

k ∼ T

}non-relativistic 
regime

‘Microscopic’ physics: relativistic (QCD), unitary (cold atoms), etc 
RG microscope with varying resolution of length scale  

                                            ~ 1/k  

Fixed point: physics looks the same for resolutions (in rescaled units) 

 scaling form, e.g. anti-commutator expectation value: 

 similarly, spectral function (commutator):  

 anomalous dimension  

Typically not for all resolutions:   IR fixed point for k  0  

 UV fixed point for k    

 occupation number exponent  

Renormalization group fixed points 

• Ansatz: (non-relativistic) MSR action with k-dependent couplings.

statics

Zk ∼ k−η Zε,k ∼ k−ηε

ρk, λk, Zk, Zε,k, γk, Ωk

Ωk ∼ kηΩ

• Litim regulator in spatial momentum; frequencies are not 
regulated.

z = 2− η + ηΩ zε = 2− ηε [ξ ∼ tz]
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Exact flow equation 

Flow interpolates between effective action (k = 0) and classical action (k  ):  

Scale derivative  

 

with   

for:  

Berges, Hoffmeister, Nucl. Phys. B 813 (2009) 383 

 

closed equation:  

gives    

!"

Berges, Tetradis, Wetterich Phys. Rept. 363 (2002) 223; 

+ [            ]

Flow equations

κ =
1

1 + Z�
ΩZ

Relaxation rate 
of the OP

Diffusion rate of 
conserved densityκ=0

�

κ=1
�

κ̇ = κ(1− κ)[ηΩ(κ)− η + ηε]

φ φ̃

φ φ

φ̃ φ

φ φ̃

E φ

φ̃ φ

φ φ̃

φ E

φ̃ φ

φ φ̃

φ φ

φ̃ E

φ φ̃

E E

φ̃ φ

φ φ̃

φ φ

Ẽ E

φ φ̃

φ φ

Ẽ φ

Figure 5.3.: Subset of diagrams that contribute to the frequency and momentum-dependent

part of the two-point function Γ(2)

φ̃φ
(p,ω). These diagrams are evaluated to obtain

the RG flow of the renormalization factor Z and the dynamic coefficient Ω−1,

and their respective scaling contributions η and ηΩ. We evaluate only the contri-

butions from the Goldstone modes which typically yields a good approximation

close to the critical point where the massless modes dominate the dynamics.

coupling given by the mixing ∂2U/(∂φ∂E) between the two sectors. If we evaluate the masses

at the potential minimum, we obtain: M̄2
0 = m̄2

0 = 0, M̄2
R = m̄2

R = 2ρ̄0(λ̄ − γ̄2/ZE).3 The

renormalization factor ZE for the conserved density yields the partially renormalized coupling

γ̄2/ZE that renormalizes in the same way as the quartic coupling λ̄ in the φ-sector. Indeed, we

may use this relation to redefine the quartic coupling in the following way, i.e., λ̄ → λ̄− γ̄2/ZE .

After this identification, we see that the RG flow equations for frequency-independent n-point

functions ∂Γ(n)/∂s take the same form as the flow equations that we know from the O(N)

model. That is, the φ-sector is completely independent of the dynamics in the E-sector, and

we may use the results from the previous chapter.

From the flow equation (5.49) we may furthermore derive the scaling contribution to the

renormalization factor. We evaluate the flow equations for the renormalization factor Z from

the Goldstone modes only, neglecting the radial part. This usually provides a good approxi-

mation close to the critical point, where the massless modes give the dominant contribution.

We obtain

−
1

Z

∂Z

∂s
= ρ̄0λ̄

2 lim
p→0

∂

∂p2

∫
ddq

(2π)d
∂̂

∂s

[
1

Zq2 +R(q)

1

Z(q + p)2 +R(q + p) + 2
(
λ̄− (γ̄2/ZE)

)
ρ̄0

]

,

(5.50)

by projection onto the corresponding diagram, where the derivative ∂̂/∂s is defined in the

usual way (see chapter 3). Only after the identification λ̄ → λ̄ − γ̄2/ZE do we restore the

3The additional field-dependence drops out at the physical point, where 〈ε〉 = 0.
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∂κΓκ[ϕ] =
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2
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�

q
∂κRκ(q)

�
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κ [q;ϕ] +Rκ(q)

�−1
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• The 2-point correlation functions receive contribution from >50 diagrams, but the nontrivial 
(and new) ones are the cuts of the following one-loop diagrams:
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Figure 5.3.: Subset of diagrams that contribute to the frequency and momentum-dependent

part of the two-point function Γ(2)

φ̃φ
(p,ω). These diagrams are evaluated to obtain

the RG flow of the renormalization factor Z and the dynamic coefficient Ω−1,

and their respective scaling contributions η and ηΩ. We evaluate only the contri-

butions from the Goldstone modes which typically yields a good approximation

close to the critical point where the massless modes dominate the dynamics.

coupling given by the mixing ∂2U/(∂φ∂E) between the two sectors. If we evaluate the masses

at the potential minimum, we obtain: M̄2
0 = m̄2

0 = 0, M̄2
R = m̄2

R = 2ρ̄0(λ̄ − γ̄2/ZE).3 The

renormalization factor ZE for the conserved density yields the partially renormalized coupling
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may use this relation to redefine the quartic coupling in the following way, i.e., λ̄ → λ̄− γ̄2/ZE .

After this identification, we see that the RG flow equations for frequency-independent n-point

functions ∂Γ(n)/∂s take the same form as the flow equations that we know from the O(N)

model. That is, the φ-sector is completely independent of the dynamics in the E-sector, and
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From the flow equation (5.49) we may furthermore derive the scaling contribution to the

renormalization factor. We evaluate the flow equations for the renormalization factor Z from

the Goldstone modes only, neglecting the radial part. This usually provides a good approxi-

mation close to the critical point, where the massless modes give the dominant contribution.

We obtain
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ddq
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λ̄− (γ̄2/ZE)

)
ρ̄0

]

,

(5.50)

by projection onto the corresponding diagram, where the derivative ∂̂/∂s is defined in the

usual way (see chapter 3). Only after the identification λ̄ → λ̄ − γ̄2/ZE do we restore the

3The additional field-dependence drops out at the physical point, where 〈ε〉 = 0.
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εφ
[             ]

• Fixed point solution: e.g. kinetic parameter 

• Statics is unchanged!
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• Status of the Model C dynamics phase diagram:

FIELD- THEORETIC TECHNIQUES AND CRITICAI, . . . II. . .
ii

c,=4-d

N3X' ~
2

y~, and Ao/I'o. The search for stable fixed points
in the space of the parameters u, v, and ~ leads
to several solutions, which determine several re-
gions in the (N, d) plane (Fig. 1). The first two
variables u and v are fixed points determined pure-
ly by the statics, namely,

(a)
~*=6e/(N+ 8)+ O(~')+ "~, (4}

FIG. 1. Topology of the (N, d) plane near d=4. The
scale is distorted to exhibit the four regions. Regions I~
and Ib are separated by the curve & =0. Equations for
the lines N~(&), N2(&) are given in the text by Eqs. (8),
(9), and (11).

as for the usual Wilson static scaling. It is al-
ways stable. The corresponding static critical
exponent of the order parameter P is the usual
index g.

(b)
0 stable for n& 0 (Region I,),

+O(E~) stable for c.& 0 (Regions Iq, II, and III}.2& 4—
N(N+ 8)

(5a)

(5 )

The corresponding static critical exponent for the
energy field E is g~,

with

T Tck~0

0 for +&0,
gg

—n/v for o&0 .
(7a)

(7b)

Finally, three possibilities are left for the fixed
point ~*.
(a) &*=+~ (Regions I„ lq}, which will be shown

to be stable for N&N, with

N& =4 —e(4+4c)+O(a ), (8)

N2& N& Ng,

N2 =4 —C(4+ 2c) .
It is beyond the scope of the E expansion to assert
whether the two domains constituting the region II
are connected or not.
(c) &*=0 (Region III), which governs the be-

havior in the complement of the previous regions.
Depending upon the relevant values of v*and ~*
the N-d plane is split into four regions with differ-
ent critical dynamics.
Region I,: @*=0, &*=~. Its boundary is G. =0,

in which we have kept the notation c for the constant
c=—6 ln~+ —1.

(b) &* finite (Region II), whose stability domain
consists of two pieces,

N& N, =2+ Ca~Inc~ (10a)

i.e. , N=4 —4e+ O(E ). Since @*=0, the energy
field decouples in the critical regime and we are
led to the same value of s as in Ref. 2,

2 (N+ 8)' 3 )' 2(N+ 8)'

6(SN+ 14)
N+8 (12)

(u(k)-k'(I+A, 'k "+Aak' ' "+A,'k") . (14)

Region II: v*WO, ~*40. In this region we find
the result which coincides with the conventional
scaling theory

(15)

Corrections to scaling now have the form of the
multiplication of the main power by a new poly-

However, the structure of corrections to scaling
is sensitive to the coupling to the energy field; for
instance, the relaxation rate co(k) of the order
parameter behaves as

~(k) -k'(I +A, k' '-«" +A, k~) (»)
in which the A&'s are nonuniversal constants. The
same correcting powers would be present every-
where, in particular in the energy relaxation rate
X~(k).
Region I~: v*40, &*=~. It is bounded by the

two lines (o. =0, N =N, ). The value of the critical
exponent z coincides with the decoupled value of re-
gion I, although the fixed point is different. How-
ever this difference reflects itself in the leading
corrections to scaling which take the form

[Brézin & De Dominicis, PRB (1975)]

[Volk & Moser, PRL (2003)]
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Renormalizing the bare dynamical model equations leads
to the renormalized counterparts of the bare quantities.
The field theoretic functions describing the flow of the
renormalized couplings and Onsager coefficients are ob-
tained from the renormalization coefficients. The flow
equations determine the fixed-point values and the uni-
versal asymptotic critical and subleading exponents.

If ! sets the time scale of the dynamical model, the
time scale ratio w of the renormalized Onsager coeffi-
cients

w ! !
$
; ' ! w

1# w
; (4)

and the suitable dynamical parameter ' appear in the
field theoretic functions. Restricting the static couplings
to their stable static fixed-point values u& ! ~uu& " 3&&2

and && for given ( and n, and using their ( expansion [8],
we find the flow equation

l
d'
dl

! )'$u&;&&;'% ! '$1" '%*w$u&;&&;'%; (5)

where
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and L ! 3 ln$4=3%. The solution of Eq. (5) for nonzero
values of the flow parameter l describes the effective
critical behavior of the dynamics. In the limit l ! 0,
the time scale ratio reaches its fixed-point value and the
critical exponents reach their universal asymptotic values.
Within this asymptotic limit, scaling laws for the corre-
lation functions can be derived.

Let us first summarize the results that are not in ques-
tion (see Fig. 1). The solution '& ! 0 of the fixed-point
equation )$u&;&&;'&% ! 0, that exists in the whole phase
space, is stable in the region I. This region is separated
from the other regions by the line c+ ! ,=- $c ! 2L"
1% containing the static exponent + of the correlation
function at the phase transition. c is the coefficient ap-
pearing in model A in which z ! 2" c+ is the dynami-
cal critical exponent. This boundary curve extends the
stability of '& ! 0 to the region where the stable fixed-
point value of the static coupling && is nonzero [3].

We are interested in the remaining region, and look for
a nonzero fixed-point function '&$(; n%< 1 at fixed (.

This is found by looking for zeros of the function *w.
Such a finite nonzero fixed-point function leads immedi-
ately to scaling, i.e., to the same scaling exponent ,=- [3]
for the relaxation rate ! and the diffusion constant $.

The usual approach for finding the fixed-point function
in the ( expansion is restricted to the region n < 2 since,
at n ! 2, the lowest order solution for '&$(; n% ! 1 di-
verges due to the logarithmic term in the two-loop order,
and this is clearly unphysical. However, it is not necessary
to expand in (: the nonlinear equation can be solved
directly, and then the divergence does not appear. The
solutions for the fixed-point function are shown in
Fig. 2(a) for different (. It is a smooth function starting
at zero for n ! 0, rises to a maximum, and decreases to
zero at its existence boundary. This existence boundary
coincides with the stability boundary of the fixed point
'& ! 0. One also observes convergence to the one-loop
result in the limit ( ! 0 [9]. For very small values of (,
one might think that another region exists, where the

FIG. 1. Regions of existence of different fixed points: (,$n%
separates the region with nondiverging (&& ' 0, right side)
from those with diverging (&& ! 0, left side) specific heat
(dashed curve). The solid curve (1$n% separates the region I
where the fixed point '&$(; n% ' 0 is stable (right side) from
those where it is unstable (left side).
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• Status of the Model C dynamics phase diagram:

One-loop ε-expansion predicted 5 possible regions

30 years later: 2-loop results claim breakdown of ε-expansion for 2<N<4...
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point ~*.
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to be stable for N&N, with

N& =4 —e(4+4c)+O(a ), (8)
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It is beyond the scope of the E expansion to assert
whether the two domains constituting the region II
are connected or not.
(c) &*=0 (Region III), which governs the be-
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Depending upon the relevant values of v*and ~*
the N-d plane is split into four regions with differ-
ent critical dynamics.
Region I,: @*=0, &*=~. Its boundary is G. =0,

in which we have kept the notation c for the constant
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(b) &* finite (Region II), whose stability domain
consists of two pieces,
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field decouples in the critical regime and we are
led to the same value of s as in Ref. 2,

2 (N+ 8)' 3 )' 2(N+ 8)'

6(SN+ 14)
N+8 (12)

(u(k)-k'(I+A, 'k "+Aak' ' "+A,'k") . (14)

Region II: v*WO, ~*40. In this region we find
the result which coincides with the conventional
scaling theory

(15)

Corrections to scaling now have the form of the
multiplication of the main power by a new poly-

However, the structure of corrections to scaling
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parameter behaves as
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same correcting powers would be present every-
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exponent z coincides with the decoupled value of re-
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Renormalizing the bare dynamical model equations leads
to the renormalized counterparts of the bare quantities.
The field theoretic functions describing the flow of the
renormalized couplings and Onsager coefficients are ob-
tained from the renormalization coefficients. The flow
equations determine the fixed-point values and the uni-
versal asymptotic critical and subleading exponents.

If ! sets the time scale of the dynamical model, the
time scale ratio w of the renormalized Onsager coeffi-
cients
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and L ! 3 ln$4=3%. The solution of Eq. (5) for nonzero
values of the flow parameter l describes the effective
critical behavior of the dynamics. In the limit l ! 0,
the time scale ratio reaches its fixed-point value and the
critical exponents reach their universal asymptotic values.
Within this asymptotic limit, scaling laws for the corre-
lation functions can be derived.

Let us first summarize the results that are not in ques-
tion (see Fig. 1). The solution '& ! 0 of the fixed-point
equation )$u&;&&;'&% ! 0, that exists in the whole phase
space, is stable in the region I. This region is separated
from the other regions by the line c+ ! ,=- $c ! 2L"
1% containing the static exponent + of the correlation
function at the phase transition. c is the coefficient ap-
pearing in model A in which z ! 2" c+ is the dynami-
cal critical exponent. This boundary curve extends the
stability of '& ! 0 to the region where the stable fixed-
point value of the static coupling && is nonzero [3].

We are interested in the remaining region, and look for
a nonzero fixed-point function '&$(; n%< 1 at fixed (.

This is found by looking for zeros of the function *w.
Such a finite nonzero fixed-point function leads immedi-
ately to scaling, i.e., to the same scaling exponent ,=- [3]
for the relaxation rate ! and the diffusion constant $.

The usual approach for finding the fixed-point function
in the ( expansion is restricted to the region n < 2 since,
at n ! 2, the lowest order solution for '&$(; n% ! 1 di-
verges due to the logarithmic term in the two-loop order,
and this is clearly unphysical. However, it is not necessary
to expand in (: the nonlinear equation can be solved
directly, and then the divergence does not appear. The
solutions for the fixed-point function are shown in
Fig. 2(a) for different (. It is a smooth function starting
at zero for n ! 0, rises to a maximum, and decreases to
zero at its existence boundary. This existence boundary
coincides with the stability boundary of the fixed point
'& ! 0. One also observes convergence to the one-loop
result in the limit ( ! 0 [9]. For very small values of (,
one might think that another region exists, where the

FIG. 1. Regions of existence of different fixed points: (,$n%
separates the region with nondiverging (&& ' 0, right side)
from those with diverging (&& ! 0, left side) specific heat
(dashed curve). The solid curve (1$n% separates the region I
where the fixed point '&$(; n% ' 0 is stable (right side) from
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Figure 5.5.: Phase diagram for Model C as a function of dimension d and the number of field

components N from the functional RG. For comparison to the ε-expansion, thick

lines near d = 4 denote O(ε) results [220]; thin/dashed lines denote the O(ε2)

results according to [43, 230].

to (5.58) (region IV). In this case, the conserved density displays dimensional scaling

with zE = 2. In this region, the physical field shows a dynamic critical scaling with

leading exponent z in the Model A universality class. However, there can be nontrivial

subleading corrections to the dynamic scaling even if the mode-coupling is zero [220].

The kinetic coefficient assumes the fixed point value κ∗ = 0 which, similar to the weak

scaling region I, describes a scenario where the order parameter relaxes asymptotically

compared to the diffusion process.

Depending on the number of field-components N and the dimensionality d of the system

the dynamic scaling properties of respective theory at the critical point can be characterized

by either one of the above solutions (based on the assumption that there is always a sta-

ble fixed point). Our results, obtained within the 4th order LPA truncation, are shown in

Fig. 5.5 where the different scaling regions (I – IV) are clearly visible. At their boundaries

the corresponding fixed points exchange their stability properties, determined by the number

of relevant eigendirections.

Therefore, let us examine the eigenvalues of the linearized RG flow around the fixed point

values. This will give us the critical indices and the corresponding eigendirections that essen-

tially define the stability of the above fixed point solutions. To derive the stability matrix,

∂βi,j/∂gm,n, we write the βi,j-functions in terms of the generalized couplings gm,n ∈ {λ, γ, . . .}
with βλ ≡ ∂λ/∂s etc. After computing the solutions of the fixed point condition, where the

β-functions vanish βλ(g∗) = βγ(g∗) = 0 etc. we determine the critical indices at the fixed

87

κ∗ = 0 ; z > zε

z = zε

γ∗ = 0; z > zε = 2

κ∗ = 1; z < zε
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• Dynamic critical phenomena are present in a wide variety of physical systems in Nature and 
experiments. In particular, they may be important in the QCD CEP search in HIC’s. 

• Yet, their classification is much more complicated than that of static critical phenomena: requires 
the knowledge of relevant IR degrees of freedom.

• Real-time FRG is a powerful nonperturbative tool which is especially suitable to describe 
universal phenomena in the vicinity of 2nd order phase transitions. [Canet et al, PRL (2004)]

• We have showed results for the full nonperturbative Model C phase diagram and established the 
existence of an anomalous scaling region and a significant change for low N’s.

• The framework alows for the investigation of the transition between micro and IR physics.

• It can also treat couplings between different order parameters, as should be the case of QCD.

Conclusions and Outlook

Thank you for your attention!
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One should always be cautious with hydro...

Boat trip
(ISMD 2006)


