

Dimuon excess from in-medium ρ decays using QCD sum rules

Alejandro Ayala*, C. A. Dominguez, M. Loewe, L. A. Hernández and A. J. Mizher

arXiv:1309.4135 [hep-ph]

(*) Instituto de Ciencias Nucleares, UNAM ayala@nucleares.unam.mx

September 2013

23-27 September 2013 Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why study ρ and dilepton spectrum?

- $\checkmark \rho$ has a large coupling to pions and muons \Longrightarrow copiously produced and able to decay and be detected in a heavy-ion collision environment
- $\checkmark \rho$ short life-time makes it ideal test particle to sample in-medium changes of hadron properties
- Changes are linked to chiral symmetry restoration and deconfinement
- Low-mass dilepton spectrum is great test ground to study basic properties of strong interaction in non-perturbative domain

Electromagnetic probes

3

✓ Escape after being produced since their mean free path is larger than the system's size

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Reveal entire thermal evolution of the collision

Electromagnetic probes

- Reveal entire thermal evolution
- Continuously emitted from early to late collision stages up to freeze out
- ✓ Low mass dileptons are one of these probes and their invariant-mass spectrum is a direct measurement of the in-medium hadronic spectral function in the vector channel

Low mass dileptons: Early days, excess below the ρ peak at SPS

- ρ droping mass (Brown-Rho) vs.
 broadening (Rapp-Wambach)
- Controversy lasted for more than a decade

< ロ > < 同 > < 回 > < 回 >

ъ

Low mass dileptons: Current data, excess due to ρ broadening

- Controversy settled by high-quality NA60 data
- Below 1 GeV, inverse slope parameter $T_{\rm eff}$ rises with mass.
- Above 1 GeV, T_{eff} drops.
- Interpretation: Different sources of dileptons. Below 1 GeV hadronic source that flows. Above 1 GeV partonic source that for SPS energies has not yet build up flow

NA60, Eur. Phys. J. C 59, 607 (2009)

・ロト ・ 雪 ト ・ ヨ ト

Spectral function

- ✓ Spectral function shows a clear peak at the nominal ρ mass
- ✓ Peak broadens for the most central collisions
- Total dilepton yield also increases with centrality

NA60, Phys. Rev. Lett. 96, 162302 (2006)

(日)

э

Explanations

- Many body approach [Rapp & Wambach, Eur. Phys. J. A 6, 415 (1999); Hess & Rapp, Nucl. Phys. A 806, 339 (2008)]
- Transport approaches [Bratkosvskaya et al., Phys. Lett. B 670, 428 (2009); J. Weil et al., PoS BORMIO2011, 053 (2011)]
- In both approaches ρ modified by scattering and melting within a baryon rich environment

• Since average density in SPS and RHIC are similar, these approaches should explain also RHIC data

Low mass dileptons: excess below the ρ peak at RHIC (PHENIX)

PHENIX, Phys. Rev. C 81, 034911 (2010)

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ④ ● ●

Low mass dileptons: excess below the ρ peak at RHIC (STAR)

(日)

Low mass dileptons: excess below the ρ peak at RHIC (STAR)

(日)

э

PHENIX Low mas dielectrons semicentral QM2012

Better S/B seems to have brought PHENIX to closer agreement with STAR

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Explanations

- Many body approach [Rapp & Wambach, Eur. Phys. J. A 6, 415 (1999); Hess & Rapp, Nucl. Phys. A 806, 339 (2008)]
- Transport approaches [Bratkosvskaya et al., Phys. Lett. B 670, 428 (2009); J. Weil et al., PoS BORMIO2011, 053 (2011)]
- In both approaches ρ modified by scattering and melting within a baryon rich environment
- Since average density in SPS and RHIC are similar, these approaches should explain also RHIC data
- Is there alternative approach that emphasizes QCD role for chiral symmetry restoration/deconfinement at finite temperature/baryon density?

Finite Energy QCD Sum Rules

- ✓ Quantum field theory based on OPE of current-current correlators and Cauchy's theorem on complex energy squared-plane
- Relates hadron spectral function to QCD condensates and fundamental degrees of freedom (quark-hadron duality)
- ✓ Finite Energy refers to finite radius of integration s₀ called the energy squared-threshold for the continuum

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Melting of resonances

- Hadron spectral function made out of resonances plus a continuum
- ✓ At finite temperature/density, s₀ decreases. Resonances melt
- ✓ FESR allow exploring how the resonance parameters change with temperature/density

For increasing T and/or μ_B the energy threshold for the continuum goes to 0

▲日▼▲□▼▲□▼▲□▼ □ ののの

Finite Energy QCD Sum Rules

Vector-current correlator at finite temperature

$$\Pi_{\mu\nu}(q_0^2, \mathbf{q}^2) = i \int d^4 x e^{i q \cdot x} \langle \mathcal{T}[V_{\mu}(x) V_{\nu}^{\dagger}(0)] \rangle$$

= $-q^2 \left[\Pi_0(q_0^2, \mathbf{q}^2) P_{\mu\nu}^T + \Pi_1(q_0^2, \mathbf{q}^2) P_{\mu\nu}^L \right]$

- Work in the limit ${\bf q} \to 0$ where $\Pi_{\mu\nu}$ contains only spatial components
- Integrating the function $\frac{s^N}{\pi} \Pi_0(s \equiv q_0^2)$ in the complex *s*-plane along a contour with a fixed radius $|s| = s_0$

$$\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^N \Pi_0(s) = -\frac{1}{\pi} \int_0^{s_0} ds \ s^N \mathrm{Im} \Pi_0(s).$$

Finite Energy QCD Sum Rules

• The integrand on the right-hand side can be written entirely in terms of hadronic degrees of freedom. Model by ρ saturation

$$\frac{1}{\pi} \mathrm{Im} \Pi_0^{_\mathrm{had}}(s) = \frac{1}{\pi} \frac{1}{f_\rho^2} \frac{M_\rho^3 \Gamma_\rho}{(s - M_\rho^2)^2 + M_\rho^2 \Gamma_\rho^2},$$

• The integrand on the left-hand side can be written entirely in terms of QCD degrees of freedom, using the OPE, as

$$\Pi^{\scriptscriptstyle ext{qcd}}(s) = \sum_{M=0} rac{C_{2M} \langle O_{2M}
angle}{(-s)^M}.$$

• The term with *M* = 0 corresponds to the perturbative (pQCD) contribution. The FESR are

$$(-1)^{N+1}C_{2N}\langle O_{2N}\rangle = 8\pi^2 \left[\frac{1}{\pi} \int_0^{s_0} ds s^{N-1} \mathrm{Im}\Pi_0^{\mathrm{had}}(s) - \frac{1}{\pi} \int_0^{s_0} ds s^{N-1} \mathrm{Im}\Pi_0^{\mathrm{pQCD}}(s)\right]$$

Finite Energy QCD Sum Rules: Finite Temperature

- Three leading FESR, six unknowns
- Strategy: provide espected behavior of three unknowns based on experience from other channels
- Choose $\Gamma_{
 ho}(T)$, $M_{
 ho}(T)$ and $C_6 \langle O_6 \rangle(T)$ as inputs

$$\begin{split} & \Gamma_{\rho}(T) &= \Gamma_{\rho}(0) \left[1 - (T/T_{c})^{3} \right]^{-1}, \\ & C_{6} \langle O_{6} \rangle(T) &= C_{6} \langle O_{6} \rangle(0) \left[1 - (T/T_{q}^{*})^{8} \right], \\ & M_{\rho}(T) &= M_{\rho}(0) \left[1 - (T/T_{M}^{*})^{10} \right], \end{split}$$

 $\Gamma_{\rho}(0)=0.145$ MeV, $C_{6}\langle O_{6}\rangle(0)=-0.951667~{\rm GeV^{6}}$ and $M_{\rho}(0)=0.776~{\rm GeV},~T_{c}=0.197~{\rm GeV},~T_{q}^{*}=0.187~{\rm GeV}$ and $T_{M}^{*}=0.222~{\rm GeV}$

• Solve for $f_{\rho}(T)$, $s_0(T)$ and $C_4\langle O_4\rangle(T)$

A.A., C.A. Dominguez, M. Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012)

Finite Energy QCD Sum Rules: Finite Temperature & chemical potential

- First include this quantity in the quark loop in the FESR. This modifies the Fermi-Dirac distribution, splitting it into particle-antiparticle contributions.
- Second, include the μ dependence of T_c . Use parametrization for the crossover transition line between chiral symmetry restored and broken phases
 - E. Gutierrez, A. Ahmad, A.A., A. Bashir, A. Raya, arXiv:1304.8065 [hep-ph]

$$T_c(\mu) = T_c(\mu = 0) - 0.218\mu - 0.139\mu^2$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Transition line

E v

Finite Energy QCD Sum Rules: Finite Temperature & chemical potential

- First include this quantity in the quark loop in the FESR. This modifies the Fermi-Dirac distribution, splitting it into particle-antiparticle contributions.
- Second, include the μ dependence of T_c . Use parametrization for the crossover transition line between chiral symmetry restored and broken phases

E. Gutierrez, A. Ahmad, A.A., A. Bashir, A. Raya, arXiv:1304.8065 [hep-ph]

$$T_c(\mu) = T_c(\mu = 0) - 0.218\mu - 0.139\mu^2$$

- Choose $s_0(T,\mu)$, $f_{\rho}(T,\mu)$ and $C_4 \langle O_4 \rangle(T,\mu)$ as inputs
- Solve for $M\rho(T)$, $\Gamma(T)$ and $C_6\langle O_6\rangle(T)$

 $M_{\rho}(T,\mu)$

◆□ → ◆圖 → ◆ 国 → ◆ 国 →

æ

 $\Gamma_{\rho}(T,\mu)$

 $f_{\rho}(T,\mu)$

<□> <@> < E> < E> E のQ

Dilepton rate

• Consider processes where pions annihilate into ρ 's which in turn decay into dimuons by vector dominance

Dilepton rate

• The number of muon pairs per unit of infinitesimal space-time and energy-momentum volume is

$$\begin{aligned} \frac{dN}{d^4 x d^4 K} &= \frac{\alpha^2}{48\pi^4} \left(1 + \frac{2m^2}{M^2} \right) \left(1 - \frac{4m_\pi^2}{M^2} \right) \sqrt{1 - \frac{4m^2}{M^2}} \\ &\times e^{-K_0/T} \mathcal{R}(K, T) \operatorname{Im}\Pi_0^{had}(M^2), \\ \mathcal{R}(K, T) &= \frac{T/K}{1 - e^{-K_0/T}} \\ &\times \ln \left[\left(\frac{e^{-E_{\max}/T} - 1}{e^{-E_{\min}/T} - 1} \right) \left(\frac{e^{E_{\min}/T} - e^{-K_0/T}}{e^{E_{\max}/T} - e^{-K_0/T}} \right) \right], \end{aligned}$$

with

$$E_{\max} = \frac{1}{2} \left[\mathcal{K}_0 + \mathcal{K} \sqrt{1 - \frac{4m_\pi^2}{M^2}} \right]$$
$$E_{\min} = \frac{1}{2} \left[\mathcal{K}_0 - \mathcal{K} \sqrt{1 - \frac{4m_\pi^2}{M^2}} \right].$$

Space-time evolution

 To compute the thermal rate as a function of the invariant mass, we need to integrate over the appropriate phase space variables

$$d^{4}K = \frac{1}{2}dM^{2}d^{2}K_{\perp}dy$$
$$d^{4}x = \tau d\tau d\eta d^{2}x_{\perp},$$

• The main expansion takes place along the longitudinal direction and thus take as the cooling law

$$T=T_0\left(\frac{\tau_0}{\tau}\right)^{v_s^2},$$

• The invariant mass distribution is given by

$$\frac{dN}{dMdy} = \Delta y M \int_{\tau_0}^{\tau_f} \tau d\tau \int d^2 K_\perp \int d^2 x_\perp \frac{dN}{d^4 x d^4 K}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $dN/dM_{\mu^+\mu^-}$, different T_f

28

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ④ ● ●

$dN/dM_{\mu^+\mu^-}$, different T_0

・ロト・日本・モン・モン・ ヨー のの

$dN/dM_{\mu^+\mu^-}$, different μ

30

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Comparison with NA60 data

31

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

CONCLUSIONS

- \checkmark FESR powerful tool to compute ρ parameters at finite T and μ
- ✓ $\Gamma(T,\mu)$ drops faster than $M(T,\mu)$ near (μ -dependent) T_c
- ✓ Calculation of dilepton spectrum from ρ decays in evolving medium in good agreement with NA60 data around the ρ peak
- \checkmark Other effects around the ρ peak: Transverse expansion velocity, equation of state
- \checkmark For lower invariant masses, consider scattering of off mass-shell ρ 's with pions also at finite T and μ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

¡Feliz Cumpleaños Profesor Kodama!

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶