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Why study p and dilepton spectrum?

v p has a large coupling to pions and muons = copiously
produced and able to decay and be detected in a heavy-ion
collision environment

v" p short life-time makes it ideal test particle to sample
in-medium changes of hadron properties

v Changes are linked to chiral symmetry restoration and
deconfinement

v Low-mass dilepton spectrum is great test ground to study basic
properties of strong interaction in non-perturbative domain
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Electromagnetic probes

v Escape after being produced since their mean free path is
larger than the system’s size

v Reveal entire thermal evolution of the collision

hard photons  thermal QGP thermal hadronic
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Electromagnetic probes

v Reveal entire thermal evolution

v Continuously emitted from early to late collision stages up to
freeze out

v" Low mass dileptons are one of these probes and their
invariant-mass spectrum is a direct measurement of the
in-medium hadronic spectral function in the vector
channel
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Low mass dileptons: Early days, excess below the p peak at SPS

e p droping mass
(Brown-Rho) vs.
broadening
(Rapp-Wambach)

e Controversy lasted for
more than a decade
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Low mass dileptons: Current data, excess due to p broadening

e Controversy settled
by high-quality
NA60 data

NA60, Eur. Phys. J. C 59, 607 (2009)
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Spectral function

v Spectral function
shows a clear peak at
the nominal p mass

V" Peak broadens for
the most central

collisions

v" Total dilepton yield
also increases with

centrality

NAG60, Phys. Rev. Lett. 96, 162302 (2006)
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Explanations

L] |\/|any bOdy approach [Rapp & Wambach, Eur. Phys. J. A 6, 415 (1999); Hess &
Rapp, Nucl. Phys. A 806, 339 (2008)]

e Transport approaches [Bratkosvskaya et al., Phys. Lett. B 670, 428 (2009); J. Weil
et al., PoS BORMIO2011, 053 (2011)]

e In both approaches p modified by scattering and melting within
a baryon rich environment

e Since average density in SPS and RHIC are similar, these
approaches should explain also RHIC data
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Low mass dileptons: excess below the p peak at RHIC (PHENIX)

PHENIX, Phys. Rev. C 81, 034911 (2010)
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Low mass dileptons: excess below the p peak at RHIC (STAR)
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Low mass dileptons: excess below the p peak at RHIC (STAR)

Nu Xu's talk
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PHENIX Low mas dielectrons semicentral QM2012
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Better S/B seems to have brought PHENIX to closer
agreement with STAR
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Explanations

e Many body approach [Rapp & Wambach, Eur. Phys. J. A 6, 415 (1999); Hess &
Rapp, Nucl. Phys. A 806, 339 (2008)]

e Tra nsport approaches [Bratkosvskaya et al., Phys. Lett. B 670, 428 (2009); J. Weil
et al., PoS BORMIO2011, 053 (2011)]

e In both approaches p modified by scattering and melting within
a baryon rich environment

e Since average density in SPS and RHIC are similar, these
approaches should explain also RHIC data

e Is there alternative approach that emphasizes QCD role for
chiral symmetry restoration/deconfinement at finite
temperature/baryon density?
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Finite Energy QCD Sum Rules

v" Quantum field theory based on
OPE of current-current
correlators and Cauchy’s theorem s
on complex energy squared-plane

v" Relates hadron spectral function
to QCD condensates and

fundamental degrees of freedom K I'sol

(quark-hadron duality)

v" Finite Energy refers to finite
radius of integration sy called the
energy squared-threshold for the
continuum
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Melting of resonances

v Hadron spectral

function made out of

resonances plus a

continuum Melting of resonances
v At finite mn

temperature/density,

sp decreases.

Resonances melt =
v FESR allow exploring
how the resonance o <
pole
parameters change —
Wlt h For increasing T and/or pg the energy threshold for the continuum goes to 0

temperature/density
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Finite Energy QCD Sum Rules

e Vector-current correlator at finite temperature
MG ) = i [ a5 TV, Vi)
=~ |Mo(ad,a>)PL, + Mi(a3. a*)PL, |
e Work in the limit ¢ — 0 where [1,,, contains only spatial

components

e Integrating the function %I’IO(S = g3) in the complex s—plane
along a contour with a fixed radius |s| = sp

1 N 1 [* N
- ds s"'Mp(s) = —= ds s Imlg(s).
271 J (s ™ Jo



Finite Energy QCD Sum Rules

e The integrand on the right-hand side can be written entirely in
terms of hadronic degrees of freedom. Model by p saturation

11w,
T2 (s — M2)? + M2r2’

1
;|m|_|r(')ad(5)

e The integrand on the left-hand side can be written entirely in
terms of QCD degrees of freedom, using the OPE, as

sy = 3 ComlOom).

oo (=)

e The term with M = 0 corresponds to the perturbative (pQCD)
contribution. The FESR are

1 [
(~)N LGN (Ooy) = 8n? [;/0 dss"mNEe(s)

1 . N-1 pQCD
| dss”™ ImIMEF(s)

™
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Finite Energy QCD Sum Rules: Finite Temperature

e Three leading FESR, six unknowns

e Strategy: provide espected behavior of three unknowns based
on experience from other channels

e Choose I',(T), M,(T) and C¢(Og)(T) as inputs

Mo(T) = Tp(0) [1—(T/TP) ",
Co(O6)(T) = Gs(06)(0) [1—(T/T2)?],
My(T) = My(0)[1—(T/T5)™],
[,(0) =0.145 MeV, C6(O6)(0) = —0.951667 GeV® and

M,(0) = 0.776 GeV, T, = 0.197 GeV, T; = 0.187 GeV and
Ty, = 0.222 GeV

e Solve for f,(T), so(T) and C4(O4)(T)

A.A., C.A. Dominguez, M. Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012)
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Finite Energy QCD Sum Rules: Finite Temperature & chemical potential

e First include this quantity in the quark loop in the FESR. This
modifies the Fermi-Dirac distribution, splitting it into
particle—antiparticle contributions.

e Second, include the ;1 dependence of T.. Use parametrization
for the crossover transition line between chiral symmetry
restored and broken phases

E. Gutierrez, A. Ahmad, A.A., A. Bashir, A. Raya, arXiv:1304.8065 [hep-ph]

Te(p) = Te(p = 0) —0.218 — 0. 1392
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Transition line
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Finite Energy QCD Sum Rules: Finite Temperature & chemical potential

e First include this quantity in the quark loop in the FESR. This
modifies the Fermi-Dirac distribution, splitting it into
particle—antiparticle contributions.

e Second, include the y dependence of T.. Use parametrization
for the crossover transition line between chiral symmetry
restored and broken phases

E. Gutierrez, A. Ahmad, A.A., A. Bashir, A. Raya, arXiv:1304.8065 [hep-ph]
Te(p) = Te(p = 0) —0.218 — 0. 1392

e Choose so( T, 1), fy(T,p) and C4(O4)(T, 1) as inputs
e Solve for Mp(T), I(T) and Cs(O6)(T)
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Mp( Tv :U)
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rp( T7 /1)

4.0

35

3.0

25

L'p/T'p(0)

2.0

15

1.0 b ey




24

fp( T, )
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Dilepton rate

e Consider processes where pions anhilate into p's which in turn
decay into dimuons by vector dominance

w u+
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Dilepton rate

e The number of muon pairs per unit of infinitesimal space-time
and energy-momentum volume is

dN a? 2m? 4m2 4m?
—— = —_(1+=)(1- 1——
d*xd*K 4874 M2 M2 M?2
x e K/TR(K, T)ImMg*(M?),
T/K
R(K7 T) = 1_ eKo/T

e_Emax/T _ 1 eEmin/T _ e—K[)/T
SR N By ol I vy ey ) B IR

with
1 4m?2
E = — | K Ky/1— i
s 5 | Mo+ Ay /\/12]
1 4m?2
o= S lKo—Ky1- =
E.. 5 | Ko /\/12]
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Space-time evolution

e To compute the thermal rate as a function of the invariant
mass, we need to integrate over the appropriate phase space
variables

d*K = %szdeLdy
d*x = rdrdnd®x,,

e The main expansion takes place along the longitudinal
direction and thus take as the cooling law

r-n(2)”

e The invariant mass distribution is given by

= AyM 2K
de y/TdT/d J_/dXJ_d4d4K
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dN/dM,

o+ different Ty
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dN/dM,
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dN/dM,,+ -, different p
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Comparison with NA60 data

To=5fm, Tp=Tc=0.197 GeV, T;=0.1 GeV
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CONCLUSIONS

BN

FESR powerful tool to compute p parameters at finite T and u
(T, u) drops faster than M( T, u) near (u-dependent) T,
Calculation of dilepton spectrum from p decays in evolving
medium in good agreement with NA60 data around the p peak
Other effects around the p peak: Transverse expansion velocity,
equation of state

For lower invariant masses, consider scattering of off mass-shell
p's with pions also at finite T and p
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iFeliz Cumpleanos Profesor Kodama!




