Charmed hadrons in nuclear matter

Gastão Krein Instituto de Física Teórica, São Paulo

23-27 September 2013 Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil

誕生日おめでとう Takeshi

私たちはあなたがブラジルの物理学のためにしたすべてに 心より感謝いたします.

誕生日おめでとう Takeshi, watashi tachi

はあなたがブラジルの物理学

のためにしたすべてに

kokoroyori 感謝 itashimasu.

Happy birthday Takeshi

... and thank you very much, from the deepest of our hearts, for all you have done for physics in Brazil

Outline

- Motivation
- J/Ψ in matter
- DN interaction
- SU(4) flavor symmetry in couplings
- Conclusions & perspectives

Interaction of charm with ordinary matter

- Understanding of the nuclear force at QCD level; role of glue (origin of hadron masses & confinement)
- D-mesons in medium: chiral-symmetry restoration
- $J/\Psi, \eta_c, D$ \cdots : possibly bound to ordinary matter
- Quark-gluon plasma

Experiments underway: JLab @ 12 GeV, Panda & CBM @ Fair, JPARC

Charmonium binding in nuclear matter

- an exotic nuclear state

Brodsky, Schmidt & de Téramond, PRL 64, 1011 (1990)

- Nucleons and charmonium have no valence quarks in common
- Interaction has to proceed via gluons QCD van der Waals
- No Pauli Principle no short-range repulsion
- Also, binding via D,D* meson loop interaction with nucleons

BE ~ 10 - 20 MeV

GK, A.W.Thomas & K.Tsushima PLB 697, 136 (2011) K.Tsushima, D. Lu, GK & A.W.Thomas PRC 83, 065208 (2011)

D,D*-meson loops

Calculate loop with effective Lagrangians

- need coupling constants & form factors

- need a model for medium dependence of D masses

Effective Lagrangians

- SU(4) flavor symmetry

$$\mathcal{L}_{\psi DD} = i g_{\psi DD} \psi^{\mu} \left[\bar{D} \left(\partial_{\mu} D \right) - \left(\partial_{\mu} \bar{D} \right) D \right]$$

$$\mathcal{L}_{\psi DD^*} = \frac{g_{\psi DD^*}}{m_{\psi}} \varepsilon_{\alpha\beta\mu\nu} \left(\partial^{\alpha}\psi^{\beta}\right) \left[\left(\partial_{\mu}\bar{D}^{*\nu}\right) D + \bar{D} \left(\partial_{\mu}D^{*\nu}\right) \right]$$

$$\mathcal{L}_{\psi D^* D^*} = ig_{\psi D^* D^*} \left\{ \psi^{\mu} \left[\left(\partial_{\mu} \bar{D}^{*\nu} \right) D_{\nu}^* - \bar{D}^{*\nu} \left(\partial_{\mu} D_{\nu}^* \right) \right] \right. \\ \left. + \left[\left(\partial_{\mu} \psi^{\nu} \right) \bar{D}_{\nu}^* - \psi^{\nu} \left(\partial_{\mu} \bar{D}_{\nu}^* \right) \right] D^{*\mu} \right. \\ \left. + \left. \bar{D}^{*\mu} \left[\psi^{\nu} \left(\partial_{\mu} D_{\nu}^* \right) - \left(\partial_{\mu} \psi^{\nu} \right) D_{\nu}^* \right] \right\}$$

$J\!/\Psi$ single-particle energies in nuclei

- solve a Klein-Gordon equation, D, D* masses QMC model

		$\Lambda_{D,D^*} = 1500 \text{ MeV}$	$\Lambda_{D,D^*} = 2000 \text{ MeV}$			
		E (MeV)	E (MeV)			
⁴ _Ψ He	1s	-4.19	-5.74			
$^{12}_{\Psi}C$	1 <i>s</i>	-9.33	-11.21			
•	1 <i>p</i>	-2.58	-3.94			
$^{16}_{\Psi}O$	1 <i>s</i>	-11.23	-13.26			
-	1 <i>p</i>	-5.11	-6.81			
⁴⁰ ΨCa	1 <i>s</i>	-14.96	-17.24			
	1 <i>p</i>	-10.81	-12.92			
	1d	-6.29	-8.21			
	2s	-5.63	-7.48			
$^{90}_{W}$ Zr	1 <i>s</i>	-16.38	-18.69			
•	1 <i>p</i>	-13.84	-16.07			
	1d	-10.92	-13.06			
	2s	-10.11	-12.22			
²⁰⁸ _W Pb	1 <i>s</i>	-16.83	-19.10			
¥	1 <i>p</i>	-15.36	-17.59			
	1 <i>d</i>	-13.61	-15.81			
	2s	-13.07	-15.26			

GK, A.W.Thomas & K.Tsushima PLB 697, 136 (2011) K.Tsushima, D. Lu, GK & A.W.Thomas PRC 83, 065208 (2011) Are those binding energies large enough to bind a J/Ψ to a large nucleus?

Condition for a bound state:

- spherical "square-well" radius R, depth V_0

$$V_0 > \frac{\pi^2 \hbar^2}{8mR^2}$$
$$R = 5 \text{ fm} \rightarrow V_0 > 1 \text{ MeV}$$

ATHENNA* collaboration JLab @ 12 GeV

Z.-E. Meziani (Co-spokesperson/Contact) N. Sparveris (Co-spokesperson) Z.W. Zhao (Co-spokesperson)

*A J/ Ψ THreshold Electroproduction on the Nucleon and Nuclei Analysis

- I) Interaction of D mesons with nucleons
- 2) SU(4) flavor symmetry
- 3) Width of D mesons
- 4) J/Ψ moving, not at rest
- 5) . . .

Next: I) and 2)

Experiment

- antiproton annihilation on the deuteron*

* J. Haidenbauer, G. Krein, U.-G. Meissner, A. Sibirtsev

I) Eur. Phys. J.A 33, 107 (2007)

2) Eur. Phys. J.A 37, 55 (2008)

DN interaction

meson + quark exchange

MEX: SU(4)-flavor symmetry for couplings, same cutoffs as KN

QEX: change quark masses (wave functions)

Wednesday, September 25, 13

Meson-meson-meson vertices

$$\mathcal{L}_{PPV} = g_{PPV} \Phi_P(x) \partial_\mu \Phi_P(x) \Phi_V^\mu(x)$$

$$\mathcal{L}_{VVP} = \frac{g_{VVP}}{m_V} i\epsilon_{\mu\nu\tau\delta}\partial^\mu \Phi_V^\nu(x)\partial^\tau \Phi_V^\delta(x)\Phi_P(x)$$

Baryon-baryon-meson vertices

$$\mathcal{L}_{NNP} = g_{NNP} \bar{\Psi}_N(x) i \gamma^5 \Psi_N(x) \Phi_P(x)$$

$$\mathcal{L}_{NNV} = g_{NNV} \bar{\Psi}_N(x) \gamma_\mu \Psi_N(x) \Phi_V^\mu(x) + \frac{f_{NNV}}{4m_N} \bar{\Psi}_N(x) \sigma_{\mu\nu} \Psi_N(x) (\partial^\mu \Phi_V^\nu(x) - \partial^\nu \Phi_V^\mu(x))$$

$$\mathcal{L}_{N\Delta P} = \frac{f_{N\Delta P}}{m_P} \bar{\Psi}_{\Delta\mu}(x) \Psi_N(x) \partial^{\mu} \Phi_P(x) + \text{H.c.}$$

$$\mathcal{L}_{N\Delta V} = \frac{f_{N\Delta V}}{m_V} i(\bar{\Psi}_{\Delta\mu}(x)\gamma^5\gamma_{\mu}\Psi_N(x) - \bar{\Psi}_N(x)\gamma^5\gamma_{\mu}\Psi_{\Delta\mu}(x))(\partial^{\mu}\Phi_V^{\nu}(x) - \partial^{\nu}\Phi_V^{\mu}(x))$$

$$\mathcal{L}_{NYP} = \frac{f_{NYP}}{m_P} (\bar{\Psi}_Y(x)\gamma^5\gamma^\mu\Psi_N(x) + \bar{\Psi}_N(x)\gamma^5\gamma^\mu\Psi_Y(x))\partial_\mu\phi_P(x)$$

Based on a previous KN Juelich model

- A. Müller-Groeling et al. NPA 513, 557 (1990)

- M. Hoffmann et al. NPA 593, 341 (1995)

"repulsive scalar" $m \sim 1.2 \text{ GeV}$

Hadjimichef, Haidenbauer and GK, PRC 66, 055214 (2002)

Model fits available KN data

describes even phase shifts

D. HADJIMICHEF, J. HAIDENBAUER, AND G. KREIN

PHYSICAL REVIEW C 66, 055214 (2002)

... and helped to kill the pentaquark

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 68, 052201(R) (2003)

Influence of a $Z^+(1540)$ resonance on K^+N scattering

J. Haidenbauer¹ and G. Krein²

¹Forschungszentrum Jülich, Institut für Kernphysik, D-52425 Jülich, Germany
²Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona, 145-01405-900 São Paulo, SP, Brazil (Received 22 September 2003; published 18 November 2003)

The impact of a $(I=0, J^P=\frac{1}{2}^+)Z^+(1540)$ resonance with a width of 5 MeV or more on the $K^+N(I=0)$ elastic cross section and on the P_{01} phase shift is examined within the KN meson-exchange model of the Jülich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z^+ with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z^+ state could be reconciled with the existing data—or, alternatively, the Z^+ state must lie at an energy much closer to the KN threshold.

DOI: 10.1103/PhysRevC.68.052201

PACS number(s): 13.75.Jz, 12.39.Pn, 14.20.Jn, 21.30.-x

Predictions for the PANDA measurement

Use SU(4) symmetry for couplings:

Eur. Phys. J.A 33, 107 (2007)
 Eur. Phys. J.A 37, 55 (2008)

DN interaction – in a color confining chiral quark model*

Inspired in the QCD Hamiltonian in Coulomb gauge

Derive from the same underlying Hamiltonian:

- constituent quark masses (mass generation)
- hadron wave-functions, hadron masses (confinement)
- effective meson-baryon interaction (nuclear force)
- X-sections, etc (observables)
- density & temperature dependence on hadron masses (not here)

Hamiltonian

 $H = H_0 + H_{\text{int}}$

$$H_0 = \int d\mathbf{x} \, \Psi^{\dagger}(\mathbf{x}) (-i\boldsymbol{\alpha} \cdot \boldsymbol{\nabla} + \boldsymbol{\beta} m) \Psi(\mathbf{x})$$

$$H_{\text{int}} = -\frac{1}{2} \int d\mathbf{x} \, d\mathbf{y} \, \rho^a(\mathbf{x}) \, V_C(|\mathbf{x} - \mathbf{y}|) \, \rho^a(\mathbf{y}) + \frac{1}{2} \int d\mathbf{x} \, d\mathbf{y} \, J_i^a(\mathbf{x}) \, D^{ij}(|\mathbf{x} - \mathbf{y}|) \, J_j^a(\mathbf{y})$$

$$\rho^{a}(\mathbf{x}) = \Psi^{\dagger}(\mathbf{x}) T^{a} \Psi(\mathbf{x}), \qquad \qquad J_{i}^{a}(\mathbf{x}) = \Psi^{\dagger}(\mathbf{x}) T^{a} \alpha_{i} \Psi(\mathbf{x}),$$

Input from the lattice

- Coulomb kernel – potential

$$V_{\text{Coul}}^{L}(\vec{k}) = \frac{1}{8L_{s}^{3}} \left\langle \sum_{a,\vec{x},\vec{y}} e^{i\vec{k}\cdot(\vec{x}-\vec{y})} [M^{-1}(-\Delta)M^{-1}]_{\vec{x}\,\vec{y}}^{aa} \right\rangle$$

$$V_{\text{Coul}}(q) = \frac{6}{\beta} a^2 V_{\text{Coul}}^L(k,\beta), \qquad q_i(k_i) = \frac{2}{a} \sin\left(\frac{\pi k_i}{L_i}\right)$$

- Fit from simulations*

$$V_{\text{Coul}}(q) = \frac{8\pi\sigma_{\text{Coul}}}{q^4} + \frac{4\pi C}{q^2} \qquad \begin{cases} \sigma_{\text{Coul}} = (552 \,\text{MeV})^2 \\ C = 6 \end{cases}$$

*A.Voigt, E.-M. Ilgenfritz, M. Muller-Preussker, Phys. Rev. D 78, 014501 (2008)

Transverse-gluon propagator

$$D_{ij}^{ab}(\vec{k}) = \langle \tilde{A}_i^a(\vec{k}) \tilde{A}_j^b(-\vec{k}) \rangle = \delta^{ab} \left(\delta_{ij} - \frac{p_i(\vec{k})p_j(\vec{k})}{p^2} \right) D_{\text{tr}}(p) \qquad p_i(\vec{k}) = \frac{2}{a} \sin\left(\frac{\pi k_i}{L}\right)$$

From the same Hamiltonian:

- dynamically generated quark masses
- hadron wavefunctions (color singlets only)
- hadron-hadron interactions
- X-sections, phase-shifts, ...

Quark mass function

- dynamical chiral symmetry breaking

(Dyson-Schwinger equation)

Wednesday, September 25, 13

Cross-sections

- short-distance: quark interchange
- long-distance: meson-exchange (mainly rho, omega sigma)

Phase shifts

How good is SU(4) flavor symmetry for couplings ?

 $m_u < m_s \ll m_c$

SU(4) symmetry:

 $g_{ar{D}
hoar{D}}=g_{K
ho K}=rac{1}{2}g_{\pi
ho\pi}$ $g_{N\Lambda_car{D}}=g_{N\Lambda K}=g_{NNar{\pi}}$

Coupling constants & Form factors

Dyson-Schwinger & Bethe-Salpeter equations:

- rainbow ladder, no free parameters (heavily constrained spectrum and e.w. decay constants)

On the other hand:

- nonrelativistic quark model + ³P₀ decay

	$g_{ ho\pi\pi} / 2g_{ ho\rm KK}$	$g_{ ho\pi\pi} / 2g_{ hoDD}$	$g_{_{ ho KK}}/g_{_{ ho DD}}$
SU(4) symmetric	1	1	1
SU(4) broken	1.05	1.28	1.22

SU(4) BREAKING: AT THE LEVEL OF 20% – 30%

C. E. Fontoura, GK, J. Haidenbauer (2013)

Nonrelativistic quark model + ³P₀ decay

	$\frac{g_{NN\pi}}{g_{N\Lambda_s K}}$	$\frac{g_{NN\pi}}{g_{N\Lambda_c}\bar{D}}$	$\frac{g_{N\Lambda_sK}}{g_{N\Lambda_c\bar{D}}}$
SU(4) symmetric	1	1	1
SU(4) broken	1.07	1.20	1.12

SU(4) BREAKING: AT THE LEVEL OF 10% – 15%

QCD sum rules¹ & Lattice²

 looked at SU(4) symmetry breaking within the charm sector only

$g_{\rho DD} = g_{\rho D^*D^*} = g_{\pi D^*D}$

M.E. Bracco, M. Chiapparini, F.S. Navarra, M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012)
 K.U. Can, G. Erkol, M. Oka, T. Takahashi, Phys. Lett. B 719, 103 (2013)

QCD sum rules

tions between the coupling constant in percentage on the right column SU(4) relation $g_{/\psi DD} = g_{J/\psi D^*D^*}$ $g_{\rho DD^*} = \frac{\sqrt{6}}{2} g_{J/\psi DD^*}$ $g_{\rho DD} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$ $g_{\pi D^*D^*} = \frac{\sqrt{6}}{2} g_{J/\psi DD^*}$ $g_{D^*D^*\rho} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$ $g_{DD\rho} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$ $g_{\rho D^*D^*} = g_{\rho DD^*}$ $g_{\rho DD} = g_{\rho D^*D^*}$ $g_{D^*D\pi} = g_{D^*D^*\rho}$ $g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$ $g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$ $g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$ $g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$ $g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$	Violation		
$g_{J/\psi DD} = g_{J/\psi D^*D^*}$	(7%)		
$g_{\rho DD^*} = \frac{\sqrt{6}}{2} g_{J/\psi DD^*}$	(12%)		
$g_{\rho DD} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$	(17%)		
$g_{\pi D^* D^*} = \frac{\sqrt{6}}{2} g_{J/\psi D D^*}$	(20%)		
$g_{D^*D^*\rho} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$	(20%)		
$g_{DD ho} = rac{\sqrt{6}}{4} g_{J/\psi D^* D^*}$	(21%)		
$g_{\rho D^* D^*} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$	(25%)		
$g_{\pi D^*D^*} = g_{\rho DD^*}$	(29%)		
$g_{\rho DD} = g_{\rho D^* D^*}$	(36%)		
$g_{D^*D\pi} = g_{D^*D^*\rho}$	(52%)		
$g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi D^*D^*}$	(62%)		
$g_{D^*D\pi} = \frac{\sqrt{6}}{4} g_{J/\psi DD}$	(64%)		
$g_{D*D\pi} = g_{DD\rho}$	(70%)		

M.E. Bracco, M. Chiapparini, F.S. Navarra, M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012)

Lattice

$$g_{D^*D\pi} = 16.23(1.71)$$

 $g_{DD\rho} = 4.84(34)$
 $g_{D^*D^*\rho} = 5.94(56)$

K.U. Can, G. Erkol, M. Oka, T. Takahashi, Phys. Lett. B 719, 103 (2013)

Perspectives - supernuclei (or charm hypernuclei)

Yu.A. Batusov et al., JETP Lett. 33, 56 (1981)

A: primary vertex

B: vertex decay of a supernucleus decay

C: decay of \overline{D}^0 (signal of $C\overline{C}$ pair)

Recent theory

PHYSICAL REVIEW C 67, 015211 (2003)

Λ_c^+ and Λ_b hypernuclei

K. Tsushima^{1,*} and F. C. Khanna^{2,†}

TABLE I. Single-particle energies (in MeV) for ${}_{j}^{17}$ O, ${}_{j}^{41}$ Ca, and ${}_{j}^{49}$ Ca ($j = \Lambda, \Lambda_{c}^{+}, \Lambda_{b}$). Single-particle energy levels are calculated up to the same highest states as that of the core neutrons. Results for the hypernuclei are taken from Ref. [10]. Experimental data for Λ hypernuclei are taken from Ref. [28], where spin-orbit splittings for Λ hypernuclei are not well determined by the experiments.

	160	170	17	17 0	40 C -	41 _C	41 0	41 C -	49	49	49 C -
	ΛO (Expt.)	ΛΟ	$\Lambda_c^+ O$	Λ_b O	ΛCa (E x pt.)	ΛCa	Λ_c^{+Ca}	Λ _b Ca	ΛCa	Λ_c^+ Ca	Λ_b Ca
1s _{1/2}	-12.5	-14.1	-12.8	-19.6	-20.0	- 19.5	-12.8	-23.0	-21.0	-14.3	-24.4
$1p_{3/2}$	-2.5	-5.1	-7.3	-16.5	-12.0	-12.3	-9.2	- 20.9	- 13.9	- 10.6	-22.2
$1_{p_{1/2}}$	$(1p_{3/2})$	-5.0	-7.3	-16.5	$(1p_{3/2})$	-12.3	-9.1	-20.9	-13.8	- 10.6	-22.2
$1d_{5/2}$						-4.7	-4.8	- 18.4	-6.5	-6.5	- 19.5
$2s_{1/2}$						-3.5	-3.4	-17.4	-5.4	-5.3	-18.8
$1d_{3/2}$						-4.6	-4.8	- 18.4	-6.4	-6.4	- 19.5
$1f_{7/2}$									_	-2.0	-16.8
								•			

Nonmesonic decays of charm hypernuclei*

*A.P. Galeao, GK, F. Krmpotic