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Polarization vector of a spin %2 particle in a relativistic fluid with inverse
four-temperature 3 = (I//T) u field at a freeze-out hypersurface >



Introduction

The single particle distribution function at local thermodynamical equilibrium
(known as Juttner distribution) reads (spinless bosons):

1
1 Bt = —ult &= po/Th

- ) - T
f(&,p) = g@yp—t@ 1 :

In HIC often used, e.g., in the so-called Cooper-Frye formula:
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QUESTION: What happens if particles have a spin?

Is it only a (2S+1) factor?
Answering this question urges us to review several of the “familiar” concepts
of statistical mechanics and hydrodynamics. Quantum features cannot be neglected.



What 1s the distribution function?

Cannot say “the density of particles in phase space” because it does not take into account
polarization degrees of freedom.

The answer can be found in the book: S.R. De Groot et al. Relativistic kinetic theory

Covariant Wigner function: scalar field ( ) =tr(p )
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For quasi-free theory, neglecting Compton-wavelength scale variations
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which define the distribution functions of particles and antiparticles



Wigner function of the free Dirac field
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The u, v spinors are the usual solution of the free Dirac equation, with all of their well
known properties (orthogonality and completeness).

Thus, the distribution function for spin %2 particles is a 2x2 matrix



Global thermodynamical equilibrium with angular momentum
non-quantum Landau's argument
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The quantum case

Density operator (see e.g. Landau, Statistical physics; A. Vilenkin, Phys. Rev. D 21 2260)
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Grand-canonical rotational
artition function

Obtained by maximizing the entropy S = —tl"(p log )0) with respect to Q2
with the constraints of total mean energy, mean momentum and mean angular momentum
Fixed (equivalent to exact conservation for a large system)

w/T is the Lagrange multiplier of the angular momentum conservation constraint
and its physical meaning is that of an angular velocity

V=WwXX



Single particle distribution function at
global thermodynamical equilibrium

In the Boltzmann limit, for an ideal relativistic gas, this is a calculation which can be done
without the explicit use of quantum field theory, just with quantum statistical mechanics and
group theory (F. B., L. Tinti, Ann. Phys. 325, 1566 (2010)).

More explicitely: maximal entropy (equipartition), angular momentum conservation and
Lorentz group representation theory.
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Re (iw/T) = eXp[DS (J3)w/T] = SL(2,C) matrix representing a rotation around @ axis (z or 3)
by an imaginary angle 1w/T.
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As a consequence, particles with spin get polarized in a rotating gas
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F.B., F. Piccinini, Ann. Phys. 323, 2452 (2008)



Barnett effect

S. J. Barnett, Magnetization by Rotation, Phys. Rev.. 6, 239-270 (1915).

Spontaneous magnetization of an uncharged body when spun around its axis, in
uantitative agreement with the previous polarization formula

M =2y
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It 1s a dissipative transformation of the orbital angular
momentum into spin of the constituents. The angular
velocity decreases and a small magnetic field appears;
this phenomenon i1s accompanied by a heating of the
sample. Requires a spin-orbit coupling.



Dirac-1zation of f

For the case S=1/2 the formulae can be rewritten using Dirac spinors
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They can be also rewritten in a fully covariant form
taking into account that

o = (w/T) (8,07 — 6,07) = v/ B2

Q being the acceleration tensor of the Frenet-Serret /

tetrad of the velocity field lines
and the generators of the Lorentz group representation
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Single particle distribution function
at local thermodynamical equilibrium

In principle, it should be calculated from the covariant Wigner function with the
local thermodynamical equilibrium quantum density operator
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Obtained by maximizing the entropy ¢ — _ ¢y ( plog ﬁ) with respect to P
with the constraints of fixed mean energy-momentum density and fixed mean
angular momentum density.

Wz, k) = tr(pre(t)Combination of quantum fields)
A complicated calculation...
One can make a reasonable ansatz which
@ reduces to the global equilibrium solution in the Boltzmann limit

& reduces to the known Fermi-Juttner or Bose-Juttner formulae at the LTE
in the non-rotating case



Ansatz for LTE
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What is w(x)?
This 1s a crucial issue to calculate polarization

At global equilibrium:
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The latter equation can be checked explicitely, but it is form is indeed a deeper
consequence of relativity coupled with thermodynamics

Equilibrium in relativity can be achieved only if the inverse four-temperature field

is a Killing vector
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If deviations from equilibrium are small, we know that the tensor w(;{;) should differ
from the above expression only by terms which vanish at equilibrium, 1.e. second-order
terms in the gradients of the [ field
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This 1s what we need for leading-order hydrodynamics!



Polarization 1n a relativistic fluid

Definition: 1 s also known as Pauli-Lubanski vector
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Canonical spin tensor

d*p

S () = §< T(0){y* B0 () 1) = 5 Stz (f(e.p) U A 2 YU () = trz (F7 (e, )V ()2 21V ()
..tracing the Y's, expanding in @ ()
which is usually a small number (at global
equilibrium ¢, /KT < 1 )...
ds§Mr7(z) 1

(p)‘np(l — np)w’’ 4+ rotation of mdlceb)

dB3p T 2

1
@.4'3(17)'33_5(3} - 1

”'F —



Polarization four-vector in the LAB frame

Final formulae:
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F. B., V. Chandra, L. Del Zanna, E. Grossi, arXiv:1303.3431 Ann. Phys. 338 (2013) 32

As a by-product, a new effect is predicted: particles in a steady temperature gradient
(here with v = 0) should be transversely polarized:
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Polarization in relativistic heavy 1on collisions

There have been several papers in the past years about this subject:

A. Ayala et al., Phys. Rev. C 65 024902 (2002)

Z.T. Liang, X. N. Wang, Phys. Rev. Lett. 94 102301 (2005) and others
B. Betz, M. Gyulassy and G. Torrieri, Phys. Rev. C 76 044901 (2007)
F. B., F. Piccinini and J. Rizzo, Phys. Rev. C 77 024906 (2008)

yet no definite formula connecting the polarization of hadrons to the hydrodynamical model.

Now we have it:
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and we can use it to predict /\ polarization in peripheral heavy ion collisions

Distribution of protons in the /A rest frame
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Because of the parity symmetry of the collision

I(p) = 8(;1, fdvfz};/(z: -

The most polarized A are those in the reaction plane (normal to angular momentum).

DISTINCTIVE FEATURE: particle and antiparticle polarization have the same
orientation, unlike in a magnetic field

action plane * ~
4 A
A




The amount of polarization depends on the thermo-vorticity field

Calculations based on: L. Csernai, V. Magas, D.J. Wang, Phys. Rev. C 87 034906 (2013)

HOy(px’py) | Ho(px’py) |

Py (GeV/c) P, (GeVic)

F.B., L. Csernai, D.J. Wang arXiv:1304.4427, PRC in press

Average polarization consistent with the bound set by RHIC (<0.02).

NOTE: the polarization owing to the spectator's magnetic field (E. Bratkovskaya et al.)
1s at least 4 orders of magnitude less than the one shown above



The role of the spin tensor in relativistic hydrodynamics

F. B., L. Tinti, Phys. Rev. D 84 (2011) 025013
F. B, L. Tinti, Phys. Rev. D 87 (2013) 025029

In Minkowski space-time, from translational and Lorentz invariance one obtains
two conserved Noether currents:
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It is very important to stress that these are operators (henceforth denoted with a hat)

8,T" =0
8}\:7\)\,11,1/ _ 8)\ (S\)\,p,y + xuf)\y . xuj:r)\,u) _ a)\g)\,w/ + f,uy . j:vyp, — 0




Relation between macroscopic (classical) and quantum observables

O = tr (;5 5}

Therefore we define as the (macroscopic) stress-energy and spin tensors:
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Pseudo-gauge transformations with a superpotential i),
F.W. Hehl, Rep. Mat. Phys. 9 (1976) 55
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They leave the conservation equations and spacial integrals (=generators, or total
energy, momentum and angular momentum) invariant.

This seems to be enough for a quantum relativistic field theory. It is not in gravity
but, as long as we disregard it, different couples of tensors related by a pseudo-
gauge transformation cannot be distinguished




Example: Belinfante symmetrization procedure
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This 1s a way of getting rid of the spin tensor, whose physical meaning seems

to be thus very limited in QFT (eliminated by a pseudo-gauge transformation).

The (mean value of the) above symmetrized Belinfante tensor is commonly assumed
to be the source of the gravitational field, at least in GR.

Nevertheless, if we are interested in local mean values, that is mean energy-momentum
density and angular momentum density or polarization, the equivalence may be broken.
Thermodynamics and hydrodynamics make a difference!



The free Dirac field in a rotating cylinder
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Belinfante couple

Belinfante set is obtained from the canonical with the
superpotential § — S

canonical

NOTE: the canonical Dirac spin tensor is also antisymmetric in the first two indices
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From previous expressions it follows 8% = D(r)e;ik”
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The momentum density and/or angular momentum density might differ in the
canonical or Belinfante case if D(r) is non-vanishing

It can be shown that D(r) and its derivative are non vanishing, so the conclusion 1s
the canonical and Belinfante set are thermodynamically inequivalent.



D(r) 1n the non-relativistic limit

It is the sum of a particle and antiparticle term:
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we can make a numerical computation of the D(r) function:

D(r) (arbitrary units)
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Nonequilibrium 1nequivalence: Change of transport coefficients

Kubo formula for shear viscosity:
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A change of the stress-energy tensor:
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Reflects into a change of shear viscosity
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Note that the change of shear viscosity is not compensated by a change of another transport
coefficient so as to maintain the same entropy production rate: also entropy changes!




Conclusions and Outlook

¢We have determined the relativistic distribution function of particles with spin %2 at local
thermodynamical equilibrium.

@ This formula allows to guantitatively determine polarization of baryons in peripheral
relativistic heavy ion collisions at the freeze-out and its momentum dependence.

@ The detection of a polarization (in agreement with the prediction of the hydro model)
would be a striking confirmation of the local thermodynamical equilibrium picture and,

to my knowledge, it would be the first direct observation of polarization induced by rotation
for single particles (Barnett effect sees the induced B field)

The role of spin degrees of freedom 1n relativistic hydrodynamics is definitely worth
being investigated. It may lead to the observation of intriguing phenomena and have
even more intriguing connections with fundamental physics



Barnett effect

S. J. Barnett, Magnetization by Rotation, Phys. Rev.. 6, 239-270 (1915).

Spontaneous magnetization of an uncharged body when spun around its axis, in
quantitative agreement with the previous polarization formula

M =2y

)

It 1s a dissipative transformation of the orbital angular
momentum into spin of the constituents. The angular
velocity decreases and a small magnetic field appears;
this phenomenon i1s accompanied by a heating of the
sample.




Converse: Einstein-De Haas effect
the only experiment by Einstein

A. Einstein, W. J. de Haas, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings, 18 I, 696-711 (1915)

— Rotation of a ferromagnet originally at rest
i T when put into an external H field
An effect of angular momentum
conservation:

spins get aligned with H (irreversibly) and

this must be compensated by a on overall
orbital angular momentum

Wie die Metralogie lemt, Elaktrongn 2u zahien
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