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THERMALIZATION

- What is the origin of the apparent strongly coupled character of 
the quark-gluon plasma ? (The QCD coupling constant is not 
(cannot be) infinite.....)
- How do we go from the initial nuclear wave-functions to the 
locally equilibrated fluid «seen» in experiments ?
- What are the initial d.o.f.’s : partons ? color fields (CGC)? 
mixture of both ?
- Initial fields are typically unstable (e.g. if anisotric momentum 
distributions of particles). Instabilities provide ‘fast’ isotropization 
of momentum distributions
- CGC picture suggests that the initial gluon density is too large to 
be accommodated by an equilibrium distribution.

(for a summary see arXiv: 1203.2042)



The over-populated quark-gluon 
plasma



CGC initial conditions

Most partons taking part in collision have 

At saturation, occupation numbers are large
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Thermodynamical considerations

Initial conditions 
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In equilibrated quark-gluon plasma 
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Will the system accommodate the particle excess by forming a 
Bose-Einstein condensate ?

(JPB, F. Gelis, J. Liao, L. McLerran, R. Venugopalan, 2012)



How does an over-populated system 
evolve towards equilibrium ? 

An interesting problem in itself

[work in collaboration with Jinfeng Liao 
and Larry McLerran]

Simplifying assumptions

- spatially uniform, non expanding systems
- isotropic in momentum space
- elastic scattering only

Question :  is onset of BEC reached in a finite time ?

Similar studies (cold atoms and cosmology):
- R. Lacaze et al. Physica D 152-153 (2001) 779
- D.V. Semikoz, I.I. Tkachev, PRA 55(1997) 489



Gluon Transport Equation in the Small Angle
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Abstract

Notes on the derivation of the transport equation for gluons in the small angle
approximation.

1 Introduction

We assume that there is a transport equation for the single particle distribution
of the following form

Dtf1 =
1

2

∫ d3p2
(2π)32E2

d3p3
(2π)32E3

d3p4
(2π)32E4

1

2E1
| M12→34 |2

× (2π)4δ(p1 + p2 − p3 − p4){f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)}
(1)

where

Dt ≡ ∂t + $v1 · $$, (2)

and the factor 1/2 in front of the integral is a symmetry factor. Summation
over color and polarization is performed on the gluons 2,3,4; average over
color and polarization is performed for gluon 1. The distribution function f is
a scalar object (i.e., independent of color and spin). We have

f(x,p) =
(2π)3

2(N2
c − 1)

dN

d3xd3p
, (3)

where N denotes the total number of gluons. In other words, f denotes
the number of gluons of a given spin and color in the phase-space element
d3xd3p/(2π)3.
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Boltzmann equation with 2->2 scattering

p1
p3 = p1 + q

p4 = p2 − qp2

Gluon distribution function 

Boltzmann equation

element d3xd3p/(2⇡)3. We assume that N remains constant during the evo-
lution, that is, we ignore in this work the e↵ect of inelastic, number changing,
processes. We also assume that the phase-space densities of di↵erent spins and
colors are equal, that is, f is independent of spin and color.

The kinetic equation that describes the evolution of bosons by elastic scatter-
ing and that includes the e↵ect of Bose statistics (sometimes referred to as
the Boltzmann-Nordheim equation), is of the form:

D
t

f1 =
1

2

Z d3p2
(2⇡)32E2

d3p3
(2⇡)32E3

d3p4
(2⇡)32E4

1

2E1
| M12!34 |2

⇥(2⇡)4�(p1 + p2 � p3 � p4){f3f4(1 + f1)(1 + f2)� f1f2(1 + f3)(1 + f4)}
(2)

where the factor 1/2 in front of the integral is a symmetry factor (that takes
into account the fact that each configuration of the gluons 3 and 4 is counted
twice in the sum-integrations over momenta, colors and spins). Summation
over color and polarization is performed on the gluons 2,3,4; average over
color and polarization is performed for gluon 1. The ‘time-derivative’ D

t

on
the left hand side may take into account the possible longitudinal expansion
of the system, that is D

t

⌘ @
t

+ v

z

·r, with r a spatial gradient. However,
in this paper we restrict ourselves to the study of a uniform, non-expanding
system and D

t

= @
t

simply.

The matrix element for gluon-gluon scattering (1 + 2 ! 3 + 4) summed over
spin and color of 2, 3 and 4, and averaged over spin and color of 1, is equal to
(see e.g. [15])

| M12!34 |2= 72g4

3� t u

s2
� s u

t2
� t s

u2

�
, (3)

with s, t, u the usual Mandelstam variables s = (p1 + p2)2, t = (p1 � p3)2,
u = (p1 � p4)2, and p

i

= (E
i

,p
i

). The dominant scatterings are small angle
scatterings, involving a small momentum transfer between the colliding gluons.
The matrix element is then dominated by the t and u channels, and can be
simplified.

Under the assumption that small angle scatterings dominate, one can in fact
reduce the transport equation to a Fokker-Planck equation describing di↵usion
in momentum space [13]. This is achieved by writing the collision integral as
the divergence of a current J (p) in momentum space,

D
t

f = �r · J = �@J
i

@p
i

. (4)

4

=



L =
Z

dq
q

3.4 Linearized equation

In the case where f ! 1, one can linearize the equation and get

Dtf(!p) = ξ
(

Λ2
sΛ
)

∇ ·
[

∇f(!p) +
p

p

(

α

Λs

)

f(p)]

]

, (89)

or, in the isotropic case,

Dtf(!p) = ξ
(

Λ2
sΛ
) 1

p2
∂p

{

p2
[

∂f

∂p
+

αs

Λs
f

]}

. (90)

4 Solving the transport equation

In order to solve the transport equation, it is convenient to eliminate all depen-
dence on the coupling constant by rescaling the time. We start by redefining
the integrals. We set

Ia =
∫ d3p

(2π)3
f(p)(1 + f(p)), Ib =

∫ d3p

(2π)3
2f(p)

p
. (91)

In terms of these integrals, we have

Λs

α
=

Ia
Ib
, Λ2

sΛ = 2π2α2Ia, (92)

and the transport equation reads

Dtf(p) = 2π2α2ξ∇ ·
[

Ia∇f(p) +
p

p
Ib f(p)[1 + f(p)]

]

. (93)

At this point, one may redefine the time and set τ = 2π2α2ξt. Then the
transport equation reads simply

Dτf(p) = ∇ ·
[

Ia∇f(p) +
p

p
Ib f(p)[1 + f(p)]

]

, (94)

or, in the isotropic case,
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Small angle approximation

⌧ = 36⇡↵2Lt

Simplified kinetic equation

‘Universal’ equation

element d3xd3p/(2⇡)3. We assume that N remains constant during the evo-
lution, that is, we ignore in this work the e↵ect of inelastic, number changing,
processes. We also assume that the phase-space densities of di↵erent spins and
colors are equal, that is, f is independent of spin and color.

The kinetic equation that describes the evolution of bosons by elastic scatter-
ing and that includes the e↵ect of Bose statistics (sometimes referred to as
the Boltzmann-Nordheim equation), is of the form:

D
t

f1 =
1

2

Z d3p2
(2⇡)32E2

d3p3
(2⇡)32E3

d3p4
(2⇡)32E4

1

2E1
| M12!34 |2

⇥(2⇡)4�(p1 + p2 � p3 � p4){f3f4(1 + f1)(1 + f2)� f1f2(1 + f3)(1 + f4)}
(2)

where the factor 1/2 in front of the integral is a symmetry factor (that takes
into account the fact that each configuration of the gluons 3 and 4 is counted
twice in the sum-integrations over momenta, colors and spins). Summation
over color and polarization is performed on the gluons 2,3,4; average over
color and polarization is performed for gluon 1. The ‘time-derivative’ D

t

on
the left hand side may take into account the possible longitudinal expansion
of the system, that is D

t

⌘ @
t

+ v

z

·r, with r a spatial gradient. However,
in this paper we restrict ourselves to the study of a uniform, non-expanding
system and D

t

= @
t

simply.

The matrix element for gluon-gluon scattering (1 + 2 ! 3 + 4) summed over
spin and color of 2, 3 and 4, and averaged over spin and color of 1, is equal to
(see e.g. [15])

| M12!34 |2= 72g4

3� t u

s2
� s u

t2
� t s

u2

�
, (3)

with s, t, u the usual Mandelstam variables s = (p1 + p2)2, t = (p1 � p3)2,
u = (p1 � p4)2, and p

i

= (E
i

,p
i

). The dominant scatterings are small angle
scatterings, involving a small momentum transfer between the colliding gluons.
The matrix element is then dominated by the t and u channels, and can be
simplified.

Under the assumption that small angle scatterings dominate, one can in fact
reduce the transport equation to a Fokker-Planck equation describing di↵usion
in momentum space [13]. This is achieved by writing the collision integral as
the divergence of a current J (p) in momentum space,

D
t

f = �r · J = �@J
i

@p
i

. (4)

4

Used in ‘linear’ approximation, (1+f)--> 1 , by
                             A.H. Mueller, PLB475 (2000) 220

                                       J. Bjoraker, R. Venugopalan PRC 63, 024609 

[~diffusion constant]

[~screening mass]

[Coulomb logarithm]



Dτf(p)=
1

p2
∂p

{

p2
[

Ia
∂f(p)

∂p
+ Ib f(p)(1 + f(p))

]}

= Ia
∂2f

∂p2
+

2Ib
p

f(1 + f) +

[

2Ia
p

+ Ib (1 + 2f)

]

∂f

∂p
. (95)

Note that for an equilibrium distribution function, we have

f(p) =
1

e(p−µ)/T − 1
,

∂f

∂p
= −

1

T
f(1 + f),

Ia
Ib

= T. (96)

To analyze the effect of the 1/p potential singularity, it is convenient to rewrite
the equation as follows

Dτf(p) = Ia
∂2f

∂p2
+ Ib (1 + 2f)

∂f

∂p
+

2

p

[

Ia
∂f

∂p
+ Ib f(1 + f)

]

. (97)

If a 1/p singularity in the distribution function develops, f ∼ C/p, then f(1+
f) ∼ C2/p2, while ∂f/∂p ∼ −C/p2. Thus the singularity will be amplified as
long as Ia − CIb < 0. Note that it is possible to maintain this regime in the
non linear regime. In the Boltzmann regime, where f # 1, the coefficient of
1/p is simply −Ia/p2 + Ib/p and is always negative at small p.

We shall solve the transport equation with some initial distribution function
whose magnitude is characterized by some f0. Taking into account that the
integral Ia scales as f 2

0 and Ib as f0, one sees that the l.h.s. is proportional to
f0, while the r.h.s. is proportional to f 3

0 . That means that the effective time
scale that controls the evolution decreases with f0 as 1/f 2

0 , and can be very
short when f0 is large. Thus, a system with a large overpopulation evolves
very fast.

4.1 Initial distribution

A glasma-motivated initial distribution is as follows:

f(p) = f0 θ(Qs − p), (98)

with Qs the saturation scale. The maximal occupation would be f0 = 1/αs.
With this initial distribution the energy density and number density are

ε0 = f0
Q4

s

8π2
, n0 = f0

Q3
s

6π2
(99)
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and therefore the initial overpopulation parameter is

n0 ε
−3/4
0 = f 1/4

0

25/4

3 π1/2
. (100)

The value of the parameter n ε−3/4 that corresponds to the onset of Bose-
Einstein condensation is obtained by taking for f(p) the ideal BE distribution
(for any given temperature T but zero chemical potential). One gets then
εSB = (π2/30) T 4 and nSB = (ζ(3)/π2) T 3, so that

n ε−3/4|SB =
303/4 ζ(3)

π7/2
≈ 0.28. (101)

This threshold will be reached for a CGC initial distribution (98) with f0 = f c
0 ,

where

f c
0 ≈ 0.154. (102)

When f0 > f c
0 then the system is initially overpopulated and when f0 < f c

0

the system is initially underpopulated.

If f0 < f c
0 , the system thermalizes to a Bose-Einstein distribution with a

temperature Teq that can be obtained by writing that the initial energy density
ε0 equals the SB energy density. We get

ε0 = εSB =
π2

30
T 4
eq, Teq =

(30ε0
π2

)1/4

=

(

15f0
4π4

)1/4

Qs. (103)

These expressions are valid when the chemical potential is very small. In case
where thermalization occurs at finite chemical potential, one should use in-
stead the following expressions for the density and the energy density

n=
T 3

2π2

∫

∞

0
dx

x2

e−µ/T ex − 1
=

1

π2
PolyLog

[

3, eµ/T
]

,

ε=
T 4

2π2

∫

∞

0
dx

x3

e−µ/T ex − 1
=

3T 4

π2
PolyLog

[

4, eµ/T
]

. (104)

4.2 Onset of Bose-Einstein condensation

We focus on the small p region, and assume that f is large in this region so
that one can approximate f(1 + f) ≈ f 2. The transport equation becomes
then
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These expressions are valid when the chemical potential is very small. In case
where thermalization occurs at finite chemical potential, one should use in-
stead the following expressions for the density and the energy density
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We focus on the small p region, and assume that f is large in this region so
that one can approximate f(1 + f) ≈ f 2. The transport equation becomes
then
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Isotropic solutions

with initial condition

Onset of BEC

where we have performed an integration by part and used the property @f
eq

/@p =
�f

eq

(1 + f
eq

)/T . It follows in particular that the current J vanishes for the
Bose-Einstein distribution f

eq

, and that this distribution is therefore a sta-
tionary solution of the Boltzmann equation.

At this point, we redefine the time and set

⌧ ⌘ 2⇡2↵2⇠t. (10)

Then the transport equation reads simply

D
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f(⌧,p) = r ·
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rf(⌧,p) +
p

p
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b

f(⌧,p)[1 + f(⌧,p)]

#

. (11)

Note that after the rescaling of the time, the transport equation contains no
parameters. It is a universal equation, whose solutions are entirely determined
by the initial conditions. In the case where f ⌧ 1, one can replace f(1+f) by f
in the equation, and similarly in the integral I

a

. One then recovers the equation
used earlier in Refs. [10,11] to study the thermalization of the quark-gluon
plasma. Finally, the non-local character of this equation is worth-emphasizing:
although Eq. (11) looks like a local partial di↵erential equation for the function
f(⌧,p), there is in fact a non-linear coupling with the entire solution through
the integrals I

a

and I
b

which enter as coe�cients of the equation.

In the case of an isotropic system, the transport equation takes the form
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It can also be written in terms of the current J (⌧, p)
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with J (⌧, p) given by

J = �I
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f [1 + f ]. (14)

The equation (11) preserves the basic conservation laws of particle number,
and energy: it can indeed be easily verified through an explicit calculation
that the particle density n =

R
p

f(p) and the energy density ✏ =
R
p

pf(p) are
independent of time. It is instructive to perform this verification on the form
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The equation (11) preserves the basic conservation laws of particle number,
and energy: it can indeed be easily verified through an explicit calculation
that the particle density n =

R
p

f(p) and the energy density ✏ =
R
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pf(p) are
independent of time. It is instructive to perform this verification on the form

6

Two types of solutions 
When f0 < f c

0 the system is initially under-populated, and will evolve to
a Bose-Einstein distribution function (see Eq. (9)), with a finite (negative)
chemical potential. This evolution, that takes place at fixed number density
and energy density, is accompanied by a growth of the entropy

S =
Z d3p

(2⇡)3
[(1 + f) ln(1 + f)� f ln f ] . (23)

A simple calculation yields
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which shows that the entropy ceases indeed to grow when f is an equilibrium
distribution function: this follows immediately from the conservation laws that
we have just discussed, or alternatively, from the vanishing of the current
J (p) in equilibrium. In the present context, the study of the current J (p)
in momentum space turns out to be a useful tool to follow the process of
thermalization.

The current J (p) is given in Eq. (14). It is composed of two terms. The
first term, proportional to I

a

and to the gradient of the distribution can be
associated with a di↵usion process that takes particles from region of high
phase-space density to region of low phase-space density. The other component
of the current, proportional to I

b

is simply proportional to the magnitude of
f (more precisely to f(1 + f)). It is negative, and drives therefore particles
towards the low momentum region, and it is most intense in the regions where
f is large. Initially, the di↵usion current will concern only the high momentum
modes (for the CGC initial conditions). However, when low momentum modes
are substantially populated, a competition sets in between the two components
of the current, leading eventually to equilibrium.

In order to get some more orientation on how the system evolves towards
equilibrium, it is instructive to evaluate the integrals I

a

and I
b

at the initial
time. We get

I0
a

=
Q3

s

6⇡2
f0(1 + f0), I0

b

=
Q2
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f0. (25)

It is also useful to introduce the following quantities
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. (26)
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Fig. 1. (color online) Left: the equilibrium (T ) and e↵ective (T ⇤) temperatures (left)
as a function of f0. Right: ↵ and ↵⇤ as a function of f0. Note that ↵ vanishes at the
critical value f c

0 = 0.154.

The quantity T ⇤ is an e↵ective temperature. This interpretation will be made
more transparent in the next section, but the fact that it goes over to the
equilibrium temperature as the system thermalizes is clear from Eq. (9) and
the discussion around. Similarly, ↵⇤ will be seen to be related to a (negative)
e↵ective chemical potential µ⇤, ↵⇤ = |µ⇤|/T ⇤, and is a measure of the value of
the distribution function at zero momentum. For the initial distribution (20),
↵⇤ is given by Eq. (26) with f(0) = f0. For the equilibrium distribution (see
Eq. (9)), f

eq

(0) = 1/(exp(�µ/T ) � 1), so that, in equilibrium, ↵ = |µ|/T .
In Fig. 1, we show the variations with f0 of the equilibrium values T and ↵.
One sees that T and T ⇤ follow the same smooth variations with f0, and the
same holds for ↵ and ↵⇤, with ↵ vanishing at the critical value of f0. For a
given initial f0 < f c

0 , one expects therefore thermalization to be generically
accompanied by a decrease of both T ⇤ and ↵⇤.

When f0 > f c

0 , the system is initially over-populated and the equilibrium state
contains a Bose-Einstein condensate. That is, the equilibrium distribution is
of the form

f
eq

(p) =
1

ep/T � 1
+ n

c

�(3)(p), n =
⇣(3)

⇡2
T 3 + n

c

, (27)

with n
c

and T determined by the initial density and energy density. We can
calculate the equilibrium temperature from the initial energy density

T = Q
s

✓
15

4⇡4

◆1/4

f 1/4
0 , (28)

while ↵ = µ = 0. The value of the condensate can be extracted from the
expression of the density given in Eq. (27) above. The variation of T with f0
is displayed in Fig. 2. One sees that the presence of the condensate makes
it milder than in the under-populated case, while T ⇤ remains linear in f0. It

10

Look for isotropic solutions

or



A standard calculation yields [13]
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, (6)

and hp ⌘ fp(1+ fp). The Coulomb logarithm, L, is a divergent integral of the
form L =

R
q

max

q

min

dq/q, where q
max

it typically of the order of the temperature,
while q

min

is determined by screening e↵ects, that is, q
min

⇠ m
D

, where m
D

is the Debye screening mass. We will take L to be a constant in our analysis.
A discussion of the e↵ects of possible variations of L with time in a similar
context can be found in [11]. 3

The momentum integrations in Eq. (5) can be performed and yield

J (p) = �2⇡2↵2⇠
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I
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. (7)

where ⇠ = 18L/⇡, and I
a

and I
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are the following integrals
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⌘
Z d3p

(2⇡)3
2f(p)

p
. (8)

The integral I
a

plays the role of a di↵usion constant (to within numerical
constants and the Coulomb logarithm, this is the proportionality coe�cient
between the current and the gradient of f), while I

b

is proportional to the De-
bye screening mass, m2

D

= 2g2N
c

I
b

. Note that for an equilibrium distribution
function f

eq

(p), the integrals I
a

and I
b

are simply related: I
a

= T I
b

. We have
indeed

f
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(p) =
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[f
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] =�
Z d3p
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=

1

T
I
a

[f
eq

], (9)

3 Note a slight inconsistency in our treatment: we assume an implicit screening
mass on the exchanged gluon, but ignore mass e↵ects on the colliding ones. For
massive gluons, both the matrix element and the tensorial structure in Eq. (5) are
modified. Also, the criterion for condensation changes from µ = 0 to µ ⇡ m

D

, where
µ is the chemical potential, which entails a modification of the dispersion relation at
small momenta, from ultra-relativistic to non relativistic. However we do not expect
these modifications to alter the main qualitative conclusions of this paper.
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The quantity T ⇤ is an e↵ective temperature. This interpretation will be made
more transparent in the next section, but the fact that it goes over to the
equilibrium temperature as the system thermalizes is clear from Eq. (9) and
the discussion around. Similarly, ↵⇤ will be seen to be related to a (negative)
e↵ective chemical potential µ⇤, ↵⇤ = |µ⇤|/T ⇤, and is a measure of the value of
the distribution function at zero momentum. For the initial distribution (20),
↵⇤ is given by Eq. (26) with f(0) = f0. For the equilibrium distribution (see
Eq. (9)), f

eq

(0) = 1/(exp(�µ/T ) � 1), so that, in equilibrium, ↵ = |µ|/T .
In Fig. 1, we show the variations with f0 of the equilibrium values T and ↵.
One sees that T and T ⇤ follow the same smooth variations with f0, and the
same holds for ↵ and ↵⇤, with ↵ vanishing at the critical value of f0. For a
given initial f0 < f c

0 , one expects therefore thermalization to be generically
accompanied by a decrease of both T ⇤ and ↵⇤.

When f0 > f c

0 , the system is initially over-populated and the equilibrium state
contains a Bose-Einstein condensate. That is, the equilibrium distribution is
of the form
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(p) =
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�(3)(p), n =
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with n
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and T determined by the initial density and energy density. We can
calculate the equilibrium temperature from the initial energy density

T = Q
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while ↵ = µ = 0. The value of the condensate can be extracted from the
expression of the density given in Eq. (27) above. The variation of T with f0
is displayed in Fig. 2. One sees that the presence of the condensate makes
it milder than in the under-populated case, while T ⇤ remains linear in f0. It
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Equilibrium parameters are determined from number and 
energy densities

When f0 < f c

0 the system is initially under-populated, and will evolve to
a Bose-Einstein distribution function (see Eq. (9)), with a finite (negative)
chemical potential. This evolution, that takes place at fixed number density
and energy density, is accompanied by a growth of the entropy

S =
Z d3p

(2⇡)3
[(1 + f) ln(1 + f)� f ln f ] . (23)

A simple calculation yields

dS
d⌧

=
Z d3p

(2⇡)3
@f

@⌧
ln

1 + f

f
= �

Z d3p

(2⇡)3
J (p)

1

f(1 + f)

@f

@p
, (24)

which shows that the entropy ceases indeed to grow when f is an equilibrium
distribution function: this follows immediately from the conservation laws that
we have just discussed, or alternatively, from the vanishing of the current
J (p) in equilibrium. In the present context, the study of the current J (p)
in momentum space turns out to be a useful tool to follow the process of
thermalization.

The current J (p) is given in Eq. (14). It is composed of two terms. The
first term, proportional to I

a

and to the gradient of the distribution can be
associated with a di↵usion process that takes particles from region of high
phase-space density to region of low phase-space density. The other component
of the current, proportional to I

b

is simply proportional to the magnitude of
f (more precisely to f(1 + f)). It is negative, and drives therefore particles
towards the low momentum region, and it is most intense in the regions where
f is large. Initially, the di↵usion current will concern only the high momentum
modes (for the CGC initial conditions). However, when low momentum modes
are substantially populated, a competition sets in between the two components
of the current, leading eventually to equilibrium.

In order to get some more orientation on how the system evolves towards
equilibrium, it is instructive to evaluate the integrals I

a

and I
b

at the initial
time. We get

I0
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=
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s
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=
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, where m
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is the Debye screening mass. We will take L to be a constant in our analysis.
A discussion of the e↵ects of possible variations of L with time in a similar
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The integral I
a

plays the role of a di↵usion constant (to within numerical
constants and the Coulomb logarithm, this is the proportionality coe�cient
between the current and the gradient of f), while I
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is proportional to the De-
bye screening mass, m2
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3 Note a slight inconsistency in our treatment: we assume an implicit screening
mass on the exchanged gluon, but ignore mass e↵ects on the colliding ones. For
massive gluons, both the matrix element and the tensorial structure in Eq. (5) are
modified. Also, the criterion for condensation changes from µ = 0 to µ ⇡ m

D

, where
µ is the chemical potential, which entails a modification of the dispersion relation at
small momenta, from ultra-relativistic to non relativistic. However we do not expect
these modifications to alter the main qualitative conclusions of this paper.
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0 the system is initially under-populated, and will evolve to
a Bose-Einstein distribution function (see Eq. (9)), with a finite (negative)
chemical potential. This evolution, that takes place at fixed number density
and energy density, is accompanied by a growth of the entropy
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which shows that the entropy ceases indeed to grow when f is an equilibrium
distribution function: this follows immediately from the conservation laws that
we have just discussed, or alternatively, from the vanishing of the current
J (p) in equilibrium. In the present context, the study of the current J (p)
in momentum space turns out to be a useful tool to follow the process of
thermalization.

The current J (p) is given in Eq. (14). It is composed of two terms. The
first term, proportional to I
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and to the gradient of the distribution can be
associated with a di↵usion process that takes particles from region of high
phase-space density to region of low phase-space density. The other component
of the current, proportional to I
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is simply proportional to the magnitude of
f (more precisely to f(1 + f)). It is negative, and drives therefore particles
towards the low momentum region, and it is most intense in the regions where
f is large. Initially, the di↵usion current will concern only the high momentum
modes (for the CGC initial conditions). However, when low momentum modes
are substantially populated, a competition sets in between the two components
of the current, leading eventually to equilibrium.
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as a function of f0. Right: ↵ and ↵⇤ as a function of f0. Note that ↵ vanishes at the
critical value f c

0 = 0.154.

The quantity T ⇤ is an e↵ective temperature. This interpretation will be made
more transparent in the next section, but the fact that it goes over to the
equilibrium temperature as the system thermalizes is clear from Eq. (9) and
the discussion around. Similarly, ↵⇤ will be seen to be related to a (negative)
e↵ective chemical potential µ⇤, ↵⇤ = |µ⇤|/T ⇤, and is a measure of the value of
the distribution function at zero momentum. For the initial distribution (20),
↵⇤ is given by Eq. (26) with f(0) = f0. For the equilibrium distribution (see
Eq. (9)), f

eq

(0) = 1/(exp(�µ/T ) � 1), so that, in equilibrium, ↵ = |µ|/T .
In Fig. 1, we show the variations with f0 of the equilibrium values T and ↵.
One sees that T and T ⇤ follow the same smooth variations with f0, and the
same holds for ↵ and ↵⇤, with ↵ vanishing at the critical value of f0. For a
given initial f0 < f c

0 , one expects therefore thermalization to be generically
accompanied by a decrease of both T ⇤ and ↵⇤.

When f0 > f c

0 , the system is initially over-populated and the equilibrium state
contains a Bose-Einstein condensate. That is, the equilibrium distribution is
of the form

f
eq

(p) =
1

ep/T � 1
+ n

c

�(3)(p), n =
⇣(3)

⇡2
T 3 + n

c

, (27)

with n
c

and T determined by the initial density and energy density. We can
calculate the equilibrium temperature from the initial energy density

T = Q
s

✓
15

4⇡4

◆1/4

f 1/4
0 , (28)

while ↵ = µ = 0. The value of the condensate can be extracted from the
expression of the density given in Eq. (27) above. The variation of T with f0
is displayed in Fig. 2. One sees that the presence of the condensate makes
it milder than in the under-populated case, while T ⇤ remains linear in f0. It
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Fig. 3. The distribution function f(⌧,p) as a function of p, for various times, from
an early time till the time where thermalization is nearly completed. Left: linear
plot. Right: double logarithmic plot. [f0 = 0.1]

numerical computation perfectly conserves particle number; it also conserves
energy to better than 0.05% in the longest evolution.

In order to facilitate the comparison of di↵erent initial conditions, it is con-
venient to redefine the time ⌧ so as to incorporate the change in time scale
caused by changes of f0, i.e., ⌧ ! ⌧ f0(1 + f0). Thus, in all results presented
in this section and the next,

⌧ = 2⇡2↵2⇠ f0(1 + f0) t. (30)

This redefinition of ⌧ makes it explicit that in the regime where f0 ⇠ 1/↵ � 1,
the coupling constant drops out from the relation between t and ⌧ . We absorb
the change in the normalization of ⌧ by simultaneously redefining the integrals
I
a,b

: we set Î
a,b

= I
a,b

/f0(1 + f0). The equations (13) and (14) become then

@
⌧

f = � 1

p2
@

@p

⇣
p2J (p)

⌘
, J (p) = �Î

a

@
p

f(p)� Î
b

f(p)[1 + f(p)]. (31)

Figure 3 shows the typical time evolution of the distribution function, starting
from an under-populated initial condition (here, with f0 = 0.1). The approach
to equilibrium proceeds by a gradual modification of the momentum distri-
bution, the momentum region around Q

s

being gradually depleted in favor
of an increase of the population of softer and harder modes. A striking fea-
ture, particularly visible in the linear plot (left panel of Fig. 3), is the rapid
growth of the population of low momentum modes. This is analyzed in the
next subsection.
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Fig. 4. (color online) Left: the current J (p) at initial time. Right: the current J (p)
for small p, at very early times, from ⌧ = 0 to ⌧ ' 0.0002. (f0 = 0.15).

4.0.1 The growth of the small momentum modes

We have already emphasized in the previous section that the current contains
two contributions, one that can be associated to di↵usion and that is propor-
tional to the gradient of the distribution, the other being simply proportional
to f(1+f), and negative. A plot of the initial current is shown in Fig. 4, where
the large and negative component is clearly visible. The (positive) di↵usion
part only a↵ects the high (p & Q

s

) momentum modes where f presents a
strong (negative) gradient. This form of the initial current is responsible for
the rapid growth of the population of the small momentum modes.

At later times, the form of the current is strongly constrained by the transport
equation. To see that, let us integrate Eq. (31) from 0 to p0 ⌧ Q

s

. We get

@
⌧

Z
p0

0
dp p2f(p) = �p20 J (p0), (32)

where we have assumed that p2J (p) ! 0 as p ! 0 (in the absence of conden-
sation, there is no net flux of particles at the origin). This equation implies
that as long as f(p) and its time derivative are regular as p ! 0, then J (p)
vanishes linearly with p. This is because, for p0 small enough, we may assume
f to be constant ⇡ f(0) inside the sphere of radius p0 and integrate the l.h.s.
of Eq. (32) to get

@f(0)

@⌧
= � 3

p0
J (p0). (33)

This condition is non trivial. It implies a subtle interplay, already alluded to,
between the global information contained in the integrals I

a

and I
b

, and the
local properties of the solution.

To understand better how this condition (33) can be satisfied by the current

13

where we have performed an integration by part and used the property @f
eq

/@p =
�f

eq

(1 + f
eq

)/T . It follows in particular that the current J vanishes for the
Bose-Einstein distribution f

eq

, and that this distribution is therefore a sta-
tionary solution of the Boltzmann equation.

At this point, we redefine the time and set

⌧ ⌘ 2⇡2↵2⇠t. (10)

Then the transport equation reads simply

D
⌧

f(⌧,p) = r ·
"

I
a

rf(⌧,p) +
p

p
I
b

f(⌧,p)[1 + f(⌧,p)]

#

. (11)

Note that after the rescaling of the time, the transport equation contains no
parameters. It is a universal equation, whose solutions are entirely determined
by the initial conditions. In the case where f ⌧ 1, one can replace f(1+f) by f
in the equation, and similarly in the integral I

a

. One then recovers the equation
used earlier in Refs. [10,11] to study the thermalization of the quark-gluon
plasma. Finally, the non-local character of this equation is worth-emphasizing:
although Eq. (11) looks like a local partial di↵erential equation for the function
f(⌧,p), there is in fact a non-linear coupling with the entire solution through
the integrals I

a

and I
b

which enter as coe�cients of the equation.

In the case of an isotropic system, the transport equation takes the form

@
⌧

f(⌧, p) = I
a

@2f

@p2
+

2I
b

p
f(1 + f) +

"
2I

a

p
+ I

b

(1 + 2f)

#
@f

@p
. (12)

It can also be written in terms of the current J (⌧, p)

@
⌧

f(⌧, p) = � 1

p2
@

@p

⇣
p2J (⌧, p)

⌘
, (13)

with J (⌧, p) given by

J = �I
a

@
p

f � I
b

f(1 + f). (14)

The equation (11) preserves the basic conservation laws of particle number,
and energy: it can indeed be easily verified through an explicit calculation
that the particle density n =

R
p

f(p) and the energy density ✏ =
R
p

pf(p) are
independent of time. It is instructive to perform this verification on the form
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We have already emphasized in the previous section that the current contains
two contributions, one that can be associated to di↵usion and that is propor-
tional to the gradient of the distribution, the other being simply proportional
to f(1+f), and negative. A plot of the initial current is shown in Fig. 4, where
the large and negative component is clearly visible. The (positive) di↵usion
part only a↵ects the high (p & Q
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) momentum modes where f presents a
strong (negative) gradient. This form of the initial current is responsible for
the rapid growth of the population of the small momentum modes.

At later times, the form of the current is strongly constrained by the transport
equation. To see that, let us integrate Eq. (31) from 0 to p0 ⌧ Q
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. We get
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dp p2f(p) = �p20 J (p0), (32)

where we have assumed that p2J (p) ! 0 as p ! 0 (in the absence of conden-
sation, there is no net flux of particles at the origin). This equation implies
that as long as f(p) and its time derivative are regular as p ! 0, then J (p)
vanishes linearly with p. This is because, for p0 small enough, we may assume
f to be constant ⇡ f(0) inside the sphere of radius p0 and integrate the l.h.s.
of Eq. (32) to get
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J (p0). (33)

This condition is non trivial. It implies a subtle interplay, already alluded to,
between the global information contained in the integrals I
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and I
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, and the
local properties of the solution.

To understand better how this condition (33) can be satisfied by the current
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to f(1+f), and negative. A plot of the initial current is shown in Fig. 4, where
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. We get
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where we have assumed that p2J (p) ! 0 as p ! 0 (in the absence of conden-
sation, there is no net flux of particles at the origin). This equation implies
that as long as f(p) and its time derivative are regular as p ! 0, then J (p)
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At later times, the form of the current is strongly constrained by the transport
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. We get
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where we have assumed that p2J (p) ! 0 as p ! 0 (in the absence of conden-
sation, there is no net flux of particles at the origin). This equation implies
that as long as f(p) and its time derivative are regular as p ! 0, then J (p)
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f to be constant ⇡ f(0) inside the sphere of radius p0 and integrate the l.h.s.
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where we have performed an integration by part and used the property @f
eq

/@p =
�f

eq

(1 + f
eq

)/T . It follows in particular that the current J vanishes for the
Bose-Einstein distribution f

eq

, and that this distribution is therefore a sta-
tionary solution of the Boltzmann equation.

At this point, we redefine the time and set

⌧ ⌘ 2⇡2↵2⇠t. (10)

Then the transport equation reads simply

D
⌧

f(⌧,p) = r ·
"

I
a

rf(⌧,p) +
p

p
I
b

f(⌧,p)[1 + f(⌧,p)]

#

. (11)

Note that after the rescaling of the time, the transport equation contains no
parameters. It is a universal equation, whose solutions are entirely determined
by the initial conditions. In the case where f ⌧ 1, one can replace f(1+f) by f
in the equation, and similarly in the integral I

a

. One then recovers the equation
used earlier in Refs. [10,11] to study the thermalization of the quark-gluon
plasma. Finally, the non-local character of this equation is worth-emphasizing:
although Eq. (11) looks like a local partial di↵erential equation for the function
f(⌧,p), there is in fact a non-linear coupling with the entire solution through
the integrals I

a

and I
b

which enter as coe�cients of the equation.

In the case of an isotropic system, the transport equation takes the form

@
⌧

f(⌧, p) = I
a

@2f

@p2
+

2I
b

p
f(1 + f) +

"
2I

a

p
+ I

b

(1 + 2f)

#
@f

@p
. (12)

It can also be written in terms of the current J (⌧, p)

@
⌧

f(⌧, p) = � 1

p2
@

@p

⇣
p2J (⌧, p)

⌘
, (13)

with J (⌧, p) given by

J = �I
a

@
p

f � I
b

f [1 + f ]. (14)

The equation (11) preserves the basic conservation laws of particle number,
and energy: it can indeed be easily verified through an explicit calculation
that the particle density n =

R
p

f(p) and the energy density ✏ =
R
p

pf(p) are
independent of time. It is instructive to perform this verification on the form
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Fig. 5. (color online) The e↵ective temperature T ⇤, and the quantity ↵⇤ = |µ⇤|/T ⇤ as
a function of ⌧ . For underpopulated case, with f0 = 0.1: the equilibrium temperature
is T = 0.354 and the equilibrium ↵ is ↵ = 0.315. These equilibrium values are
indicated by the horizontal dashed lines.

4.0.2 Thermalization in the under-populated regime

We turn now to the description of the overall evolution towards equilibrium in
the under-populated case f0 < f c

0 . Fig. 5 displays the variations of the e↵ective
temperature T ⇤, and the e↵ective chemical potential as the quantity ↵⇤ =
|µ⇤|/T ⇤. As discussed at the end of the previous section, these two quantities
must decrease in order for the system to reach equilibrium. As seen from
Fig. 5 this decrease is regular, and the time variations of T ⇤ and ↵⇤ provide
indications for when thermalization is approximately achieved: thus, both T ⇤

and ↵⇤ have almost reached their equilibrium values, T = 0.354 and ↵ = 0.315
at ⌧ & 20. Note however that this concerns only the lowest moments of the
distribution function. The high momentum tail of the distribution reaches its
equilibrium value only asymptotically. For instance, we have verified that the
higher moments of the distribution evolve more slowly than T ⇤ and µ⇤.

It is also interesting to consider the current J (p) as well as the flux F(p) as
a function of time. These quantities are displayed in Fig. 6. The plot of the
flux (left panel of Fig. 6) provides a clear illustration of how particles move in
momentum space as a function of time: from the initial momentum Q

s

towards
small and large momenta. As time passes, the flux decreases regularly and
becomes vanishingly small by the time ⌧ ⇡ 20, i.e., by the time at which T ⇤ and
µ⇤ have relaxed to the their equilibrium values (see Fig. 5). A similar behavior
is observed for the current (right panel of Fig. 6), with a linear slope almost
constant at small momenta: this, according to Eq. (33), indicates that f(0)
grows almost linearly with time, until late times where the slope eventually
vanishes as the system relaxes to equilibrium. This picture continues to hold
until the threshold for condensation, without any noticeable changes in time
scales (measured with ⌧ defined in Eq. (30)).
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becomes vanishingly small by the time ⌧ ⇡ 20, i.e., by the time at which T ⇤ and
µ⇤ have relaxed to the their equilibrium values (see Fig. 5). A similar behavior
is observed for the current (right panel of Fig. 6), with a linear slope almost
constant at small momenta: this, according to Eq. (33), indicates that f(0)
grows almost linearly with time, until late times where the slope eventually
vanishes as the system relaxes to equilibrium. This picture continues to hold
until the threshold for condensation, without any noticeable changes in time
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(14), we observe that at small momenta, the distribution function quickly
adjusts its shape to a local distribution function. This is because the collision
rate is large at small momenta: in fact, the collision rate (1/f)@

⌧

f diverges
as 1/p at small p when J is constant. 5 Furthermore, collisions change small
momenta by amounts of order one, hence can drive the soft modes quickly
to equilibrium. Note finally that soft particles scatter predominantly on hard
ones (because these are most numerous), rather than on soft ones. Thus we
may expect the small angle approximation to remain reasonably accurate (it
would not be so if collisions among soft particles were dominant). Let us then
assume that at small p, f(p) deviates slightly form an equilibrium distribution,
for which the current vanishes. That is, we assume that for small p, f(p) is of
the form

f(p) = f ⇤(p) + g(p), g(0) = 0, (34)

where f ⇤(p) is chosen so that

0 = Î
a

@f ⇤

@p
+ Î

b

f ⇤(1 + f ⇤). (35)

At this point, we assume that one can ignore the feedback of the change of the
distribution function on the values of the integrals Î

a

and Î
b

. 6 In other words,
we regard Eq. (35) as a simple di↵erential equation for f ⇤, at fixed Î

a

and
Î
b

. This equation implies that f ⇤ is a Bose-Einstein equilibrium distribution
function

f ⇤(p) =
1

e(p�µ

⇤)/T ⇤ � 1
, (36)

with T ⇤ the e↵ective temperature already introduced in the previous section,
namely

T ⇤ ⌘ I
a

I
b

, (37)

while the value of the e↵ective chemical potential µ⇤ follows from the condition
g(0) = 0, i.e.,

5 The collision rate is also large at large p, but then the distribution function is very
small. Besides, for large momenta, small angle collisions do not change momenta by
large amounts, so that they are less e�cient to drive the high momentum particles
to equilibrium.
6 We are making here an approximation akin to an adiabatic approximation: the
rate of change of the distribution function is much larger than that of the integrals
Î
a

and Î
b

, which play the role of slow variables in this problem.
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(µ⇤ < 0)
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Fig. 6. (color online) The flux F(p) (left) and the current J (right) as a function
of p, for various times between initial time until thermalization is nearly completed
(f0 = 0.1). The times are ⌧ = 1.1, 2.7, 5.5, 11, 16.5.

5 The over-populated case: onset of Bose-Einstein condensation

Now we turn to the overpopulated case, namely the case f0 > f c

0 . For defi-
niteness, most plots presented in this section correspond to f0 = 1, and CGC
initial conditions (except at the end of the section, where other initial condi-
tions are considered). In this case, the system in equilibrium contains a Bose
condensate. As mentioned earlier, we cannot, with the simple equation (31),
follow the system all the way to equilibrium, but we can study the threshold
for the development of the condensate, and show that this occurs in a finite
time ⌧

c

.

A plot of T ⇤ and µ⇤ as a function of ⌧ is given in Fig. 7, for various values
of f0. The dependence of T ⇤ and µ⇤ on f0 at early times can be qualitatively
understood from Eqs. (26) which show that for large f0, the initial value of
T ⇤ grows linearly with f0, while ↵⇤ decreases with increasing f0, and so does
|µ⇤|.

The plot of µ⇤ as a function of ⌧ (right panel of Fig. 7) clearly shows that µ⇤

vanishes for a finite time ⌧
c

, which decreases as f0 increases, with ⌧
c

infinite for
f0 = f c

0 . This dependence of ⌧c on f0 is illustrated in the left panel of Fig. 8. As
suggested by the plot in the right panel of Fig. 7, µ⇤ vanishes (approximately)
linearly at ⌧

c

. The corresponding slope is plotted as a function of f0 in the
right panel of Fig. 8.

Note that the equilibrium is not fully reached at the onset of condensation, so
that the notions of temperature and chemical potential are not well defined
there. That is, T ⇤ and µ⇤ keep their meaning of e↵ective temperature and
chemical potential characterizing the small momentum part of the distribution
function, as discussed earlier. In order to reach full equilibrium, the thermal
part of the distribution (i.e. that part of the distribution that concern particles
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(13) of the transport equation. To do so, consider the number n
p0 of particles

(of a given species) in a sphere of radius p0. We have

n
p0 =

1

2⇡2

Z
p0

0
dp p2f(⌧, p). (15)

By taking the time derivative of n
p0 , and using Eq. (13), we obtain

dn
p0

d⌧
=

1

(2⇡)3
(F(0)� F(p0)) , F(p) ⌘ 4⇡p2J (p), (16)

where F(p) is the flux of particles crossing a sphere of radius p (counted
positively if the flow is away form the origin). Clearly F(p0) vanishes as p0 !
1 and, in the absence of condensation, F(0) = 0. This ensures that particle
number is conserved. Similarly, for the energy density ✏

p0 contained in a sphere
of radius p0,

✏
p0 =

1

2⇡2

Z
p0

0
dp p3f(p), (17)

we have

(2⇡)3
d✏

p0

d⌧
= pF(p)|

p=0 � p0F(p0) + 4⇡
Z

p0

0
dp p2J (p). (18)

The arguments used above for the density can be invoked here to show that
the first two terms vanish as p0 ! 1. As for the integral, it can be written as

� 1

4⇡

Z
p0

0
dpF(p) = I

a

Z
p0

0
dp p2 @

p

f(p) + I
b

Z
p0

0
dp p2f(1 + f). (19)

Then, recalling the definitions (8) of I
a

and I
b

, we get an exact cancellation
in the r.h.s. as p0 ! 1. This is because

R
p0
0 dp p2@

p

f = �
R
p0
0 dp p2(2f/p) to

within surface terms that vanish in the limit p0 ! 1. It is worth noticing
that while the particle number conservation follows just from the fact that
the time derivative of f(p) is the divergence of a current, the conservation of
energy involves explicitly the integrals I

a

and I
b

.

3 Initial conditions and two types of solutions

We shall be interested in this paper in following the time evolution of the
distribution function f(⌧,p), as given by the transport equation (12), starting
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Evolution towards equilibrium 
(under-populated case)
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not in the condensate) will continue to evolve as condensation proceeds. This
can of course only be studied with a full set of equations that include the
coupling between the condensate and the termal particles.

A more general view of the onset of condensation in terms of the current and
flux of particles in momentum space is provided by Fig. 9. Particularly note-
worthy is the behavior of the current at small momenta: instead of decreasing
smoothly as in the under-populated case, it exhibits a strong increase (in ab-
solute value), suggesting a singular behavior as ⌧ approaches ⌧

c

. In fact, as
we shall see, the low momentum region is characterized by a simple scaling
behavior that characterizes the onset of Bose-Einstein condensation.

In order to understand better how the singularity associated to Bose-Einstein
condensation develops as ⌧ approaches ⌧

c

, we return to the small p analysis,
and study the limit |µ⇤| ! 0. In the calculation of the integral

R
p0
0 dp p2 @

⌧

f(p),
we can approximate the distribution function by the classical equilibrium dis-
tribution, that is f ⇤(p) ⇡ T ⇤/(p�µ⇤), with the parameters T ⇤ and µ⇤ function
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Onset of Bose-Einstein condensation
(over-populated case)

The effective chemical potential vanishes in a finite time 

f0 = 0.2, 0.3, 0.5, 0.8, 1, 2, 5
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of ⌧ (|µ⇤|, p0 ⌧ T ⇤). A simple calculation yields (y ⌘ p0/|µ⇤|):

@
⌧

Z
p0

0
dp p2f(p) = (µ⇤)2

@T ⇤

@⌧
h1(y) + T ⇤|µ⇤|@µ

⇤

@⌧
h2(y), (41)

with

h1(y) ⌘ log (1 + y) +
1

2
y(y � 2), h2(y) ⌘ 2 log (1 + y)� y(2 + y)

1 + y
. (42)

This should equal �p20J (p0) (see Eq. (32)). We have therefore

�J (⌧, p0) =
@T ⇤

@⌧

h1(y)

y2
+

T ⇤

|µ⇤|
@µ⇤

@⌧

h2(y)

y2
, y ⌘ p0

|µ⇤| . (43)

By expanding the expression above for small y, one recovers the expression of
the current obtained earlier for p0 ⌧ |µ⇤|, namely

�J (⌧, p0) =

 
1

|µ⇤|
@T ⇤

@⌧
� T ⇤

|µ⇤|2
@|µ⇤|
@⌧

!

p0 =
ḟ(0)

3
p0. (44)

Our interest here is the other limit, |µ⇤| ⌧ p0 ⌧ T ⇤. In this limit, we find that
the current is of the form (in leading order)
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The current exhibits a singular behavior at small momentum
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the current obtained earlier for p0 ⌧ |µ⇤|, namely
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Our interest here is the other limit, |µ⇤| ⌧ p0 ⌧ T ⇤. In this limit, we find that
the current is of the form (in leading order)
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with

h1(y) ⌘ log (1 + y) +
1

2
y(y � 2), h2(y) ⌘ 2 log (1 + y)� y(2 + y)

1 + y
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By expanding the expression above for small y, one recovers the expression of
the current obtained earlier for p0 ⌧ |µ⇤|, namely
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J (⌧, p0) ⇡
1

p0

@(|µ⇤|T ⇤)

@⌧
. (45)

This component of the current is clearly visible in Fig. 9 (note that a contri-
bution ⇠ 1/p in the current yields a linear contribution to the flux, also visible
in the figure).
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Fig. 10. (color online) The scaling function (43) representing J (p) (left) and the
corresponding flux F(p) very near ⌧

c

.

However, more generally, Eq. (43) shows that the current is in a scaling form,
with its dependence on p0 entirely contained in the dependence on y = p0/|µ⇤|.
In the vicinity of the critical time, the chemical potential vanishes, and we may
set

|µ⇤| = C(⌧
c

� ⌧)⌘. (46)

From the discussion above we know that ⌘ ' 1. 7 As for the temperature, it is
a regular function of ⌧ near ⌧

c

. The scaling function h1(y)/y2 is an increasing
function of y, that varies between 0 and 1/2 as y runs from 0 to infinity. In the
expression of the current, it multiplies a regular function of ⌧ , @T ⇤/@⌧ . The
scaling function h2(y)/y2 is also a regular function of y, but it is multiplied by
a divergent quantity as ⌧ approaches ⌧

c

. One concludes then that, at small p,
and for ⌧ very near ⌧

c

, the second contribution to the current dominates, so
that

J (⌧, p) ' ⌘T ⇤

⌧
c

� ⌧

h2(y)

y2
, y =

p0
C(⌧

c

� ⌧)⌘
. (47)

This scaling function is plotted in Fig. 10 (left panel), assuming ⌘ = 1, together
with the corresponding function representing the flux F(p) (right panel). One
recognizes the characteristic small p behaviors already identified in Fig. 9,
namely the 1/p singularity of the current, and the corresponding linear be-
havior of the flux. For small values of y, h2(y)/y2 ⇠ �y/3, so that, in terms

7 In related studies, either in the non relativistic regime [4], or for massive scalar
field theory [3], where in both cases the dispersion relation is non relativistic in the
vicinity of condensation, an exponent larger than 1 is observed.
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This should equal �p20J (p0) (see Eq. (32)). We have therefore
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By expanding the expression above for small y, one recovers the expression of
the current obtained earlier for p0 ⌧ |µ⇤|, namely
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Our interest here is the other limit, |µ⇤| ⌧ p0 ⌧ T ⇤. In this limit, we find that
the current is of the form (in leading order)
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Fig. 9. (color online) JL: The flux F(p) (left) and the current J (right) as a

function of p, for various times between initial time until the time close

to onset (f0 = 1). The times are ⌧ = 0.024, 0.25, 0.54, 0.87, 1.23, 1.43, 1.64.
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ḟ(0)

3
p0. (44)

Our interest here is the other limit, |µ⇤| ⌧ p0 ⌧ T ⇤. In this limit, we find that
the current is of the form (in leading order)

19



J (⌧, p0) ⇡
1

p0

@(|µ⇤|T ⇤)

@⌧
. (45)

This component of the current is clearly visible in Fig. 9 (note that a contri-
bution ⇠ 1/p in the current yields a linear contribution to the flux, also visible
in the figure).
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However, more generally, Eq. (43) shows that the current is in a scaling form,
with its dependence on p0 entirely contained in the dependence on y = p0/|µ⇤|.
In the vicinity of the critical time, the chemical potential vanishes, and we may
set

|µ⇤| = C(⌧
c

� ⌧)⌘. (46)

From the discussion above we know that ⌘ ' 1. 7 As for the temperature, it is
a regular function of ⌧ near ⌧

c

. The scaling function h1(y)/y2 is an increasing
function of y, that varies between 0 and 1/2 as y runs from 0 to infinity. In the
expression of the current, it multiplies a regular function of ⌧ , @T ⇤/@⌧ . The
scaling function h2(y)/y2 is also a regular function of y, but it is multiplied by
a divergent quantity as ⌧ approaches ⌧

c

. One concludes then that, at small p,
and for ⌧ very near ⌧

c

, the second contribution to the current dominates, so
that

J (⌧, p) ' ⌘T ⇤

⌧
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� ⌧

h2(y)

y2
, y =

p0
C(⌧

c

� ⌧)⌘
. (47)

This scaling function is plotted in Fig. 10 (left panel), assuming ⌘ = 1, together
with the corresponding function representing the flux F(p) (right panel). One
recognizes the characteristic small p behaviors already identified in Fig. 9,
namely the 1/p singularity of the current, and the corresponding linear be-
havior of the flux. For small values of y, h2(y)/y2 ⇠ �y/3, so that, in terms

7 In related studies, either in the non relativistic regime [4], or for massive scalar
field theory [3], where in both cases the dispersion relation is non relativistic in the
vicinity of condensation, an exponent larger than 1 is observed.
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7 In related studies, either in the non relativistic regime [4], or for massive scalar
field theory [3], where in both cases the dispersion relation is non relativistic in the
vicinity of condensation, an exponent larger than 1 is observed.
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with the corresponding function representing the flux F(p) (right panel). One
recognizes the characteristic small p behaviors already identified in Fig. 9,
namely the 1/p singularity of the current, and the corresponding linear be-
havior of the flux. For small values of y, h2(y)/y2 ⇠ �y/3, so that, in terms

7 In related studies, either in the non relativistic regime [4], or for massive scalar
field theory [3], where in both cases the dispersion relation is non relativistic in the
vicinity of condensation, an exponent larger than 1 is observed.
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However, more generally, Eq. (43) shows that the current is in a scaling form,
with its dependence on p0 entirely contained in the dependence on y = p0/|µ⇤|.
In the vicinity of the critical time, the chemical potential vanishes, and we may
set
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function of y, that varies between 0 and 1/2 as y runs from 0 to infinity. In the
expression of the current, it multiplies a regular function of ⌧ , @T ⇤/@⌧ . The
scaling function h2(y)/y2 is also a regular function of y, but it is multiplied by
a divergent quantity as ⌧ approaches ⌧
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that
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This scaling function is plotted in Fig. 10 (left panel), assuming ⌘ = 1, together
with the corresponding function representing the flux F(p) (right panel). One
recognizes the characteristic small p behaviors already identified in Fig. 9,
namely the 1/p singularity of the current, and the corresponding linear be-
havior of the flux. For small values of y, h2(y)/y2 ⇠ �y/3, so that, in terms

7 In related studies, either in the non relativistic regime [4], or for massive scalar
field theory [3], where in both cases the dispersion relation is non relativistic in the
vicinity of condensation, an exponent larger than 1 is observed.
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Fig. 11. (color online) The distribution f(p) near the condensa-
tion point. The various curves from bottom to top correspond to
⌧ = 1.8237, 1.8537, 1.8837, 1.8957, 1.9077, 1.9137, 1.9197, 1.9233, 1.9257, 1.9269, 1.9277.
The time at onset is ⌧

c

= 1.9857.

of p0, the slope of the current diverges at small p at the onset. Also, the func-
tion h2(y)/y2 has a minimum at y ⇡ 1.567. In terms of p0 the corresponding
minimum goes to zero as one approaches the onset for condensation.

To complete the picture, we have plotted in Fig. 11 the function f(p) in a
logarithmic scale, at very small p. This illustrates how the 1/p tail of the
distribution function develops. At ⌧

c

, the distribution function diverges as
1/p, but it remains finite at p = 0 as long as µ⇤ is non vanishing.

We conclude this section by presenting results corresponding to di↵erent initial
conditions. As we argued before, we expect the growth of low momentum
modes to be a robust feature of the transport equation, for quite a large class
of relevant initial conditions. As an illustration we have considered a Gaussian
initial distribution of the form JL: NOTE CHANGE OF PRE-factor:

f(p) = f0 g(p/Qs

), g(p/Q
S

) = a e�[b⇤(p/Q
s

�1)]2 , (48)

with the numerical constant a = 0.73 and b = 4. In contrast to the color glass
initial condition, this distribution contains only hard modes to start with.
However, as shown in Fig. 12, soft modes quickly appear in the system, and the
distribution rapidly acquires a form that is similar to that of the CGC initial
condition. The calculation is done JL: for f0 = 1.37 which corresponds
to an over-populated case (for the Gaussian initial condition (48)
f c

0 = 0.43). We expect then the system to reach the onset of Bose-Einstein
condensation. And it does. In particular the characteristic singular universal
behavior is clearly visible in the plot of the current in the right panel of Fig. 12.
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The distribution at small momentum 
near the onset

⇠ 1
p



Inelastic processes

In principle, of higher order in the gauge coupling
However soft emissions are enhanced

In principle, prevent the formation of BEC (particle number 
is no longer conserved)

But explicit calculations indicate that they may 
shorten the time to reach the onset of BEC....

[Xu-Guang Huang, Jinfeng Liao, arXiv: 1303.7214]



Summary
- initial states of colliding heavy nuclei at high energy are 
characterized by ‘over-populated’ gluonic state. Because of the 
large occupation, the system remains `strongly interacting’ in 
spite of the small coupling constant

- the (dynamical) growth of (very) soft modes seems to a be a 
robust feature. It may lead to the formation of a (transient) 
Bose condensate. 

- the phenomenon is well established in simulations of scalar 
field theory (and in other context, e.g. inflationary cosmology)

- simulations of gauge theories are inconclusive 

- the nature of the condensate, if it exists, is unclear 


