Viscous Hydrodynamics for Relativistic Heavy-Ion Collisions: Riemann Solver for Quark-Gluon Plasma

Kobayashi Maskawa Institute Department of Physics, Nagoya University *Chiho NONAKA*

Hydrodynamic Model: Yukinao Akamatsu, Shu-ichiro Inutsuka, Makoto Takamoto Hybrid Model: Yukinao Akamatsu, Steffen Bass, Jonah Bernhard

September 24, 2013@RANP 2013, Rio de Janeiro, Brazil

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Current understanding

observables

strong elliptic flow @RHIC

model

Current understanding

model

hydrodynamic model

Current understanding

hydrodynamic model

Current understanding

Current understanding

Current understanding

generator

Current understanding

Current understanding

Current understanding

C. NONAKA

Our Hybrid Model

Fluctuating Initial conditions

Hydrodynamic expansion

Freezeout processFrom Hydro to particleFinal state interactions

Our Hybrid Model

Fluctuating Initial conditions Hydrodynamic expansion

Freezeout processFrom Hydro to particleFinal state interactions

UrOME

Akamatsu, Inutsuka, CN, Takamoto: arXiv:1302.1665, J. Comp. Phys. (2014) 34

HYDRODYNAMIC MODEL

Viscous Hydrodynamic Model

- Relativistic viscous hydrodynamic equation $\partial_{\mu}T^{\mu\nu} = 0$
 - First order in gradient: acausality
 - Second order in gradient:
 - Israel-Stewart, Ottinger and Grmela, AdS/CFT,

Grad's 14-momentum expansion, Renomarization group

- Numerical scheme
 - Shock-wave capturing schemes: Riemann problem
 - Godunov scheme: analytical solution of Riemann problem
 - SHASTA: the first version of Flux Corrected Transport algorithm, Song, Heinz, Chaudhuri
 - Kurganov-Tadmor (KT) scheme, McGill

Takamoto and Inutsuka, arXiv:1106.1732 Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665

• Israel-Stewart Theory

(ideal hydro) **1. dissipative fluid dynamics** = advection + dissipation

Riemann solver: Godunov method

Two shock approximation

Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)

Rarefaction wave \longrightarrow shock wave

2. relaxation equation = advection + stiff equation

Numerical Scheme

Israel-Stewart Theory

Takamoto and Inutsuka, arXiv:1106.1732

1. Dissipative fluid equation

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \tau^{\mu\nu}$$

$$= T_{\text{ideal}} + T_{\text{dissip}}$$

$$\partial_{t}U + \nabla \cdot F(U) = 0 \qquad U = U_{\text{ideal}} + U_{\text{dissip}}$$

Relaxation Equation

Takamoto and Inutsuka, arXiv:1106.1732

• Numerical scheme

$$\hat{D}\Pi = \frac{1}{\tau_{\Pi}}(\Pi_{NS} - \Pi) - I_{\Pi},$$

$$(\frac{\partial}{\partial t} + v^{j}\frac{\partial}{\partial x^{j}})\Pi = -\frac{I_{\Pi}}{\gamma}, + advection$$

up wind method

$$egin{aligned} rac{\partial}{\partial t} \Pi &= rac{1}{\gamma au_{\Pi}} (\Pi_{NS} - \Pi), \ & ext{stiff equation} \ \Delta t &< au_{ ext{relax}} << au_{ ext{fluid}} \end{aligned}$$

• during Δt Π_{NS} ~constant

Piecewise exact solution

$$\Pi = (\Pi_0 - \Pi_{NS}) \exp\left[-\frac{t - t_0}{\tau_{\Pi}}\right] + \Pi_{NS}$$

fast numerical scheme

• Shock Tube Test : Molnar, Niemi, Rischke, Eur. Phys. J.C65, 615 (2010)

Shocktube problem

• Ideal case

L1 Norm

• Numerical dissipation: deviation from analytical solution

Large ΔT difference

10

• SHASTA with small A_{ad} has large numerical dissipation

Artificial and Physical Viscosities

Molnar, Niemi, Rischke, Eur. Phys. J. C65, 615 (2010)

2

3

stability

Large ΔT difference

- Our algorithm is stable even with small numerical dissipation.

Shocktube problem

• Viscous case

Our Hybrid Model

Our Hybrid Model

Initial Pressure Distribution

• MC-KLN (centrality 15-20%)

freezeout hypersurface

• Output from Cornelius

Time Evolution of ε_n and v_n

• Eccentricity & Flow anisotropy

$$\mathcal{E}_{n}e^{in\Phi_{n}} = \left\langle z^{n} \right\rangle / \left\langle \left| z \right|^{n} \right\rangle, \quad z = x + iy \quad \text{Shift the origin so that } \varepsilon_{1} = 0$$

$$v_{n}e^{in\psi_{n}} = \left\langle v^{n} \right\rangle, \quad v = v_{x} + iv_{y}, \quad (0 \le \varepsilon_{n}, v_{n} \le 1)$$

$$\left\langle \cdots \right\rangle = \int_{T > T_{f} = 155 \text{MeV}} d^{2}x \quad \cdots \quad S^{0}(x, y) \middle/ \int_{T > T_{f} = 155 \text{MeV}} d^{2}x \quad S^{0}(x, y)$$

Time Evolution of Entropy

Entropy of hydro (T>T_{sw}=155MeV)

• LHC (one event)

• RHIC (one event)

• LHC (200 events)

• RHIC (200 events)

• Transverse momentum spectrum

Effect of Hadronic Interaction

Transverse momentum distribution

Higher harmonics from Hydro + UrQMD

Effect of hadronic interaction

- We develop a state-of-the-art numerical scheme
 - Viscosity effect
 - Shock wave capturing scheme: Godunov method

Our algorithm

- Less artificial diffusion: crucial for viscosity analyses
- Stable for strong shock wave
- Construction of a hybrid model
 - Fluctuating initial conditions + Hydrodynamic evolution + UrQMD
- Higher Harmonics
 - Time evolution, hadron interaction

Time Evolution of ε_n

• Eccentricities

• Flow anisotropies

Eccentricities from 200 events

• Flow anisotropies from 200 events

θ

EoS Dependence

Numerical Method

Artificial and Physical Viscosities

Molnar, Niemi, Rischke, Eur. Phys. J. C65, 615 (2010)

2

3

stability

Numerical Dissipation

Sound wave propagation

Convergence Speed

$$L(p, p_s; N_{\text{cell}}) \propto 1/N_{\text{cell}}^2$$

Space and time discretization Second order accuracy

L(p,p_s;N_{cell}) (fm⁻³)

Numerical Dissipation

•numerical dissipation:
$$\eta_{
m num} = -rac{3\lambda}{8\pi^2}c_{s0}(e_0+p_0)\ln\left[1-rac{\pi}{2\lambda\delta p}L(p,p_s;N_{
m cell})
ight]$$

• from fit of calculated data

$$\eta_{\rm num} \approx 1000 \ (\Delta x)^2$$

$$\eta_{ ext{num}} pprox \mathbf{1} \cdot rac{c_{ ext{s0}}(e_0+p_0)}{\lambda}$$

$$rac{(a_0+p_0)}{\lambda}(\Delta x)^2$$

$$L(p, p_s; N_{\text{cell}}) \propto \lambda \delta p / N_{\text{cell}}^2 = (\delta p / \lambda) \cdot (\Delta x)^2$$

η_{num} vs Grid Size

