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Aim of the talk

* present a possibility/attempts to investigate
pre-equilibrium stages of heavy-ion
collisions by using strong field physics

 Show an example of observables which are
related to information at the very early
stages.
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must be resummed when B >> B,

=2 “Nonlinear QED effects”
* A new interdisciplinary field: involving high-intensity LASER physics,
hadron physics (heavy-ion physics), condensed matter physics (exciton),
astrophysics (neutron stars, magnetars, early universe)
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Multiple absorption of photons
(experimentally confirmed SLAC E144 (1996))




strong magnetic field in heavy-ion collisions

* Photons in strong B

vacuum birefringence and decay into e+e- pair
photon’s HBT interferometry in HIC

* Neutral pions in strong B

new decay mode : ° +B > e+e- “Bee decay”
photon conversion into 7° in strong B

* Summary
other possibilities?



/ Heavy-ion Collisions: Little Bang \

After a finite short time, particle

Quark-Gluon Plasma (QGP) . detectors
) ted | | Kinetic distributions and
IS Created as a loca freeze-out correlations of

equilibrium state produced

hadronization particles

0 ‘U QGP phase

: ’ quark and gluon
' ". degrees of freedom

“Early thermalization” problem
How is it possible to thermalize
in such a short period??

- ime??
What happens' in early time?* 0 iR

Original figure hy
P. Sorensen
arXiv:0905.0%74
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At RHIC E;
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i eB ~1-10m_>>m, !
3 140MeV  05MeV -
2 o
g  eB/m2~0(10%) t=0, O(1023) ~0.6fm =
eB/m 2 ~ O(10%) t=0, O(10°) 7~0.6fm

for u quark m, ~ 2MeV r

_ Evenlarger at LHC -0/

* Decay very fast:

Strong field physics will be most prominent in very early time!
(though the fields are still strong enough even at QGP formation time)
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“Strong field physics”
can be a good probe of
early time dynamics in HICs

¥

Can provide new insights
into unsolved problem of
“early thermalization”



Novel properties of p al pions In
strong magnetic fields

* Possible observable effects in HICs

* HICs create many photons and neutral pions.

* Both are charge neutral. But can be affected
through fermion (quark or electron) one loop.
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Dressed fermion in external B /

* Properties of a photon propagating in a magnetic field
< vacuum polarization tensor I1*V(q,B)
e Old but new problem [Weisscopf 1936, Baier-Breitenlohner 1967, Narozhnyi 1968, Adler 1971]

- Polarization tensor I1*V(q,B) has been known in integral form
- Analytic representation obtained very recently [Hattori-Itakura 2013]



= probing magnetic vacuum “polarized” by external fields
~ photon couples to virtual excitation of vacuum (cf: exciton-polariton)

B dependent anisotropic response of a fermion (Landau levels)
- discretized transverse vs unchanged longitudinal motion

- Two different refractive indices : VACUUM BIREFRINGENCE

- energy conservation gets modified

= Pol. Tensor can have imaginary part : PHOTON DECAY INTO e+e- PAIR
(lots of astrophysical applications)
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* Dispersion relation of two physical modes gets modified

- Two refractive indices : “Birefringence”

g n2 — —1+xot+xa
n° = > 1 1+x0+x1 cos? 6
w 2 — 1+Xo
o 1+x0+x2 sin? 0

1. Compute x4, %1 . X, analytically at the one-loop level
Hattori-ltakura Ann. Phys. 330 (2013)

2. Solve them self-consistently w.r.t nin LLL approx.
Hattori-Itakura Ann. Phys. 334 (2013)
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Infinite summation w.r.t.nand | = summation over two Landau levels
Numerically confirmed by Ishikawa, et al. arXiv:1304.3655 [hep-ph]
couldn’t find the same results starting from propagators with Landau level decomposition
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Refractive index n| deviates from 1
and increases with increasing @

cf: air n = 1.0003, water n=1.333

New branch at high energy is
accompanied by an imaginary part
= decay into an e+e- pair
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Very short length
- relevant for magnetars

Even shorter in HIC
- relevant for very soft
photons generating
anisotropic distribution
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Based on a simple toy model with moderate modification

Magnetic field Hattori & KI. arXiv:1206.3022
Without magnetic field

| ™ Gside °
Photon pair 3
| e B

200 -100 100 200
Magnification and distortion g.. (MeV)

< can determine the profile of photon source if spatial distribution of
magnetic field is known.



e Chiral anomaly induces n° decay through triangle diagram

™ =2y: 0 (ez)
Dominant (98.798 % in vacuum)

99.996 %
™ 3>y+ete: O (63)

Dalitz decay (1.198 % in vacuum)
NLO contribution

e Adler-Bardeen’s theorem

There is no radiative correction to the triangle diagram
Triangle diagram gives the exact result in all-order perturbation theory

- only two photons can couple to nt°



cf: axion

e (very light, but
small coupling)
n%+B 2 e*e
B “Bee” decay

* Also implies
-- conversion into y with space-time varying B
-- Primakoff process* (y* + B 2> ): important in HIC
-- mixing of m®and y

* observed in nuclear Coulomb field
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nucleus

Gluon Compton scattering in LO gq annihilation in LO

Some of y* will convert into ©° in strong B, inducing reduction of dilepton vyield
Conversion rate is strongest in perpendicular direction to B

mostly dileptons —> negative elliptic flow of dileptons
¢ 0
¢ 0,00 g b, (GeV)
TS 4 6 3 10+
fff‘ ~0.02} H"‘*u_._h'““*m-___ LHC
. . some of_them : S~ ==
convert into n° —0.04} ~o
(less dileptons) i R
—0.06F Vs =200GeV: By=m? S~
[ s =276 TeV: By = 10m2 RHIC
* nPwill get positive v2 but difficult to see 008 e = 015 Gey
. . . P o————— iy, =0, eV
* Depends on time profile of B fields o0t o




on early-time dynamics of HIC.

Photons and neutral pions exhibit interesting phenomena in
strong magnetic fields.

Photons show birefringence and can decay into e+e- pairs. We
obtained analytic representation of the polarization tensor and
computed refractive indices.

Chiral anomaly suggests that neutral pions can decay into e+e-
without an accompanying photon, which becomes the
dominant decay mode in strong magnetic fields.

Conversion of a virtual photon into a neutral pion is also
possible and can be seen as negative elliptic flow of dileptons
in heavy-ion collisions.



— 1017—10*'® Gauss \

VeB~1-10m,;
Noncentral heavy-ion coll.
at RHIC and LHC
Also strong Yang-Mills
fields \/gB ~ 1-a few GeV

4x10'3 Gauss : “Critica
magnetic field of electrons
‘IeBc= m, = 0.5MeV

d 10%Tesla=10'2Gauss:

. Super critical magnetic
JIn Florida) Typical neutron star P -

(e Mee field may have existed in
surface .

8.3 Tesla : very early Universe.

Superconducting Maybe after EW phase

magnets in LHC transition? (cf: vachaspati’91)
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