Novel properties of photons and hadrons in strong magnetic fields

In collaboration with K. Hattori and S. Ozaki

Kazunori Itakura Theory Center, KEK

RANP2013 @ CBPF in Rio, Brazil September 26th 2013

First of all, and most importantly,

I came here to say

First of all, and most importantly,

I came here to say

``Rogge generator"
<u>http://app-sale.info/rogge/</u>
Insert your favorite words!

Count Rogge, 8th president of IOC

Aim of the talk

 present a possibility/attempts to investigate pre-equilibrium stages of heavy-ion collisions by using <u>strong field physics</u>

 Show an example of observables which are related to information at the very early stages.

What is strong field physics?

- Characteristic phenomena that occur under strong gauge fields (EM fields and Yang-Mills fields)
- Typically, weak-coupling but non-perturbative

ex) electron propagator in a strong magnetic field

$$= \bigwedge_{e} + \bigwedge_{e} + \bigwedge_{e} + \bigwedge_{e} + \dots + \bigoplus_{e} + \dots + \bigoplus$$

must be resummed when $B >> B_c$

→ "Nonlinear QED effects"

• A new interdisciplinary field: involving high-intensity LASER physics, hadron physics (heavy-ion physics), condensed matter physics (exciton), astrophysics (neutron stars, magnetars, early universe)

Examples of nonlinear QED effects

<u>Euler-Heisenberg action</u>

effective potential of constant EM fields

Nonlinear Compton effects

 $e + n\gamma \rightarrow e' + m\gamma$

Multiple absorption of photons

(experimentally confirmed SLAC E144 (1996))

Plan

Introduction

strong magnetic field in heavy-ion collisions

Photons in strong B

vacuum birefringence and decay into e+e- pair photon's HBT interferometry in HIC

Neutral pions in strong B

new decay mode : $\pi^0 + B \rightarrow e + e$ - "Bee decay" photon conversion into π^0 in strong B

Summary

other possibilities?

Strong magnetic fields in HICs

 Non-central HICs at RHIC and LHC provide STRONGEST magnetic fields.

Strong magnetic fields in HICs

• Non-central HICs at RHIC and LHC provide **STRONGEST** magnetic fields.

Strong magnetic fields in HICs

• Non-central HICs at RHIC and LHC provide **STRONGEST** magnetic fields.

• Decay very fast:

Strong field physics will be most prominent in very early time! (though the fields are still strong enough even at QGP formation time)

Very strong fields exist at very early time in HIC

"Strong field physics" can be a good probe of early time dynamics in HICs

Can provide new insights into unsolved problem of "early thermalization"

We discuss

- Novel properties of photons and neutral pions in strong magnetic fields
- Possible observable effects in HICs
- HICs create many photons and neutral pions.
- Both are charge neutral. But can be affected through fermion (quark or electron) one loop.

Photons in strong magnetic fields

• Properties of a photon propagating in a magnetic field

 \leftarrow vacuum polarization tensor Π^{μν}(*q*,*B*)

- Old but new problem [Weisscopf 1936, Baier-Breitenlohner 1967, Narozhnyi 1968, Adler 1971]
 - Polarization tensor $\Pi^{\mu\nu}(q,B)$ has been known in *integral* form
 - Analytic representation obtained very recently [Hattori-Itakura 2013]

Magnetic vacuum as a media

Propagating photon in strong magnetic field

= probing magnetic vacuum "polarized" by external fields

~ photon couples to virtual excitation of vacuum (cf: exciton-polariton)

B dependent anisotropic response of a fermion (Landau levels)

- discretized transverse vs unchanged longitudinal motion
 - → Two different refractive indices : **VACUUM BIREFRINGENCE**
- energy conservation gets modified
 - → Pol. Tensor can have imaginary part : **PHOTON DECAY INTO e+e- PAIR**

(lots of astrophysical applications)

$$\Pi_{\rm ex}^{\mu\nu}(q) = \chi_0(q^2\eta^{\mu\nu} - q^{\mu}q^{\nu}) + \chi_1(q_{\parallel}^2\eta_{\parallel}^{\mu\nu} - q_{\parallel}^{\mu}q_{\parallel}^{\nu}) + \chi_2(q_{\perp}^2\eta_{\perp}^{\mu\nu} - q_{\perp}^{\mu}q_{\perp}^{\nu})$$

present only in external fields

$$\begin{split} \eta_{\parallel}^{\mu\nu} &= diag(1,0,0,-1) & q_{\parallel}^{\mu} &= (q^0,q_{\perp},0,q^3) \\ \eta_{\perp}^{\mu\nu} &= diag(0,-1,-1,0) & q_{\parallel}^{\mu} &= (0,q_{\perp},0,0) \end{split}$$

II parallel to B

⊥ transverse to B

Vacuum birefringence

• Maxwell eq. with the polarization tensor :

$$\left(q^2\eta^{\mu\nu} - q^{\mu}q^{\nu} + \hat{\Pi}_{\rm ex}^{\mu\nu}\right)A_{\nu}(q) = 0$$

 $\Pi_{\rm ex}^{\mu\nu}(q) = \chi_0(q^2\eta^{\mu\nu} - q^{\mu}q^{\nu}) + \chi_1(q_{\parallel}^2\eta_{\parallel}^{\mu\nu} - q_{\parallel}^{\mu}q_{\parallel}^{\nu}) + \chi_2(q_{\perp}^2\eta_{\perp}^{\mu\nu} - q_{\perp}^{\mu}q_{\perp}^{\nu})$

Dispersion relation of two physical modes gets modified
 → Two refractive indices : "Birefringence"

$$n^{2} \equiv \frac{|\mathbf{q}|^{2}}{\omega^{2}} \longrightarrow \begin{cases} n_{1}^{2} = \frac{1 + \chi_{0} + \chi_{1}}{1 + \chi_{0} + \chi_{1} \cos^{2} \theta} \\ n_{2}^{2} = \frac{1 + \chi_{0}}{1 + \chi_{0} + \chi_{2} \sin^{2} \theta} \end{cases}$$

- 1. Compute χ_0 , χ_1 , χ_2 analytically at the one-loop level Hattori-Itakura Ann. Phys. 330 (2013)
- 2. Solve them self-consistently w.r.t *n* in LLL approx. Hattori-Itakura Ann. Phys. 334 (2013)

Analytic representation of $\Pi^{\mu\nu}(q,B)$

Representation in double integral w.r.t. proper times

$$\chi_i(r_{\parallel}^2, r_{\perp}^2; B_{\rm r}) = \frac{\alpha}{4\pi} \int_{-1}^{1} d\beta \int_{0}^{\infty} d\tau \; \frac{\Gamma_i(\tau, \beta)}{\sin \tau} \; \mathrm{e}^{-iu \cos(\beta \tau)} \; \mathrm{e}^{i\eta \cot \tau} \; \mathrm{e}^{-i\phi_{\parallel} \tau} \,,$$

$$B_{\rm r} = B/B_c, \ r_{\parallel}^2 = \frac{q_{\parallel}^2}{4m^2} \text{ and } r_{\perp}^2 = \frac{q_{\perp}^2}{4m^2} = -\frac{|q_{\perp}|^2}{4m^2}$$
$$\eta \equiv -2r_{\perp}^2/B_{\rm r} \text{ and } u \equiv \eta/\sin\tau$$
$$\phi_{\parallel}(r_{\parallel}^2, B_{\rm r}) = \frac{1}{B_{\rm r}} \left\{ 1 - (1 - \beta^2) \ r_{\parallel}^2 \right\},$$

$$\Gamma_0(\tau,\beta) = \cos(\beta\tau) - \beta\sin(\beta\tau)\cot\tau,$$

$$\Gamma_1(\tau,\beta) = (1-\beta^2)\cos\tau - \Gamma_0(\tau,\beta),$$

$$\Gamma_2(\tau,\beta) = 2\frac{\cos(\beta\tau) - \cos\tau}{\sin^2\tau} - \Gamma_0(\tau,\beta)$$

Analytic representation of $\Pi^{\mu\nu}(q,B)$

$$\begin{split} \chi_{i} &= \frac{\alpha B_{r}}{4\pi} \sum_{n=0}^{\infty} \left(2 - \delta_{n0}\right) \left[\sum_{\ell=0}^{\infty} \Omega_{\ell i}^{n(0)} + \sum_{\ell=1}^{\infty} \Omega_{\ell i}^{n(1)} + \sum_{\ell=2}^{\infty} \Omega_{\ell i}^{n(2)} \right], \\ & \Omega_{\ell 0}^{n(0)} = (1 - \delta_{n0}) C_{\ell}^{n-1}(\eta) F_{\ell}^{n}(\xi, B_{r}) - n\eta^{-1} C_{\ell}^{n}(\eta) G_{\ell}^{n}(\xi, B_{r}), \\ & \Omega_{\ell 0}^{n(1)} = (1 + \delta_{n0}) C_{\ell-1}^{n+1}(\eta) F_{\ell}^{n}(\xi, B_{r}) - n\eta^{-1} C_{\ell-1}^{n}(\eta) G_{\ell}^{n}(\xi, B_{r}), \\ & \Omega_{\ell 0}^{n(2)} = 0. \\ & \Omega_{\ell 0}^{n(0)} = C_{\ell}^{n}(\eta) \{F_{\ell}^{k}(\xi, B_{r}) - H_{\ell}^{n}(\xi, B_{r})\} - \Omega_{\ell 0}^{n(0)}, \\ & \Omega_{\ell 1}^{n(1)} = C_{\ell-1}^{n}(\eta) \{F_{\ell}^{k}(\xi, B_{r}) - H_{\ell}^{n}(\xi, B_{r})\} - \Omega_{\ell 0}^{n(0)}, \\ & \Omega_{\ell 1}^{n(2)} = 0, \\ & \Omega_{\ell 1}^{n(2)} = 0, \\ & \Omega_{\ell 2}^{n(2)} = -\Omega_{\ell 0}^{n(0)}, \\ & \Omega_{\ell 2}^{n(2)} = D_{\ell}^{n(1)}(\eta) F_{\ell}^{n}(\xi, B_{r}) - \Omega_{\ell 0}^{n(1)}, \\ & \Omega_{\ell 2}^{n(2)} = D_{\ell}^{n(2)}(\eta) F_{\ell}^{n}(\xi, B_{r}). \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda\right) \{(1 - \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}, \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}, \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}, \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 + \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 - \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 - \delta_{n0}) C_{\lambda}^{n-1}(\eta) - C_{\lambda}^{n}(\eta)\}. \\ & D_{\ell}^{n(2)}(\eta) = -8\sum_{\lambda=0}^{\ell-1} \left(\ell - \lambda - 1\} \{(1 - \delta_{n0}) C_{\lambda}^$$

- Infinite summation w.r.t. n and l = summation over two Landau levels
- Numerically confirmed by Ishikawa, et al. arXiv:1304.3655 [hep-ph]
- couldn't find the same results starting from propagators with Landau level decomposition

Refractive index

- Need to self-consistently solve the equation (effects of back-reaction)
- Use LLL solution for simplicity $\rightarrow \chi_0 = \chi_2 = 0, \chi_1 \neq 0$

$$n_{\perp}^{2} = \frac{1 + \chi_{1}}{1 + \chi_{1} \cos^{2} \theta}, \quad \chi_{1} = \chi_{1}(q_{\parallel}^{2}, q_{\perp}^{2}, B)$$

$$n_{\perp}^{2} = 1$$

$$\begin{cases} q_{\parallel}^{2} = \omega^{2} - q_{z}^{2} = \omega^{2}(1 - n_{\parallel}^{2})\cos^{2} \theta) \\ q_{\perp}^{2} = -|q_{\perp}|^{2} = -\omega^{2}(n_{\parallel}^{2})\sin^{2} \theta \end{cases}$$

Refractive index $n_{||}$ deviates from 1 and increases with increasing ω

cf: air *n* = 1.0003, water *n* = 1.333

New branch at high energy is accompanied by an imaginary part → decay into an e+e- pair

Decay length

Amplitude of an incident photon decays exponentially characterized by the decay length

$$d \equiv \frac{1}{2\omega\kappa} = \frac{1}{2\omega n_{\rm imag}}.$$

Surviving length ~ life time

Very short length → relevant for magnetars

Even shorter in HIC → relevant for very soft photons generating anisotropic distribution

Angle dependence at various photon energies For magnetars $\Rightarrow B_{\rm r} = 500$

Imaginary part

Effects are stronger with stronger magnetic fields or higher energy photons

 $Br=B/Bc = O(10^5)$ at RHIC

 $\tilde{\omega}^2 = 10000 \leftrightarrow \omega = 200 \text{MeV}$

$$n_{\rm lim} = \sqrt{\epsilon_{\rm lim}} = |\cos\theta|^{-1}$$

Consequences in HIC

Generates elliptic flow (v₂) and higher harmonics (v_n)

(at very low momentum region)

Distorted photon ``HBT image"

Magnification and distortion q_{out} (MeV)

← can determine the profile of photon source if spatial distribution of magnetic field is known.

Neutral pion decay

• Chiral anomaly induces π^0 decay through triangle diagram

$$\pi^0 \to 2\gamma : \mathcal{O}\left(e^2\right)$$

Dominant (98.798 % in vacuum)

99.996 %

$$\pi^0 \to \gamma + e^+ e^- : \mathcal{O}\left(e^3\right)$$

Dalitz decay (1.198 % in vacuum) NLO contribution

Adler-Bardeen's theorem

There is no radiative correction to the triangle diagram Triangle diagram gives the exact result in all-order perturbation theory

ightarrow only two photons can couple to π^0

Neutral pions in strong B

Hattori , KI, Ozaki, arXiv:1305.7224[hep-ph]

• There is only one diagram for a <u>constant</u> external field to be attached

cf: axion (very light, but small coupling)

- Also implies
 - -- conversion into γ with space-time varying B
 - -- Primakoff process* ($\gamma^* + B \rightarrow \pi^0$): important in HIC
 - -- mixing of π^0 and γ

* observed in nuclear Coulomb field

Decay rates of three modes

Mean lifetime Magnetar

Heavy Ion Collision

Solid : "Bee" decay Dashed: 2γ decay Dotted : Dalitz decay

$$\Gamma_{Be^+e^-} = \frac{q^2 q_{\parallel}^2}{12\pi\omega_{\pi}} \left(\lambda \frac{eB}{q^2}\right)^2 \left(1 + \frac{2m^2}{q^2}\right) \sqrt{1 - \frac{4m^2}{q^2}}$$

 $B_{\pi} = B/m_{\pi}^{2}$

$$au_{life} = \Gamma_{total}^{-1}$$

$$\Gamma_{2\gamma} + \Gamma_{Dalitz} + \Gamma_{Bee}$$

Energetic pions created in cosmic ray reactions will be affected

γ conversion into π^0 in HICs

HICs create many high energy γ s as well as γ *s (decaying into dileptons)

Some of γ^* will convert into π^0 in strong B, inducing reduction of dilepton yield Conversion rate is strongest in perpendicular direction to B

ightarrow negative elliptic flow of dileptons

- π^0 will get positive v2 but difficult to see
- Depends on time profile of B fields

Summary

- Strong field physics can in principle provide useful information on early-time dynamics of HIC.
- **Photons** and **neutral pions** exhibit interesting phenomena in strong magnetic fields.
- Photons show birefringence and can decay into e+e- pairs. We obtained analytic representation of the polarization tensor and computed refractive indices.
- Chiral anomaly suggests that neutral pions can decay into e+ewithout an accompanying photon, which becomes the dominant decay mode in strong magnetic fields.
- Conversion of a virtual photon into a neutral pion is also possible and can be seen as negative elliptic flow of dileptons in heavy-ion collisions.

 $1 \text{ Tesla} = 10^4 \text{ Gauss}$

How strong?

10¹⁷—10¹⁸ Gauss $\sqrt{eB} \sim 1 - 10 m_{\pi}$: Noncentral heavy-ion coll. at RHIC and LHC Also strong Yang-Mills fields $\sqrt{gB} \sim 1 - a$ few GeV Magnetars

45 Tesla : strongest steady magnetic field (High Mag. Field, Lab. In Florida)

8.3 Tesla : Superconducting magnets in LHC 4x10¹³ Gauss : "Critical" magnetic field of electrons $\sqrt{eB_c} = m_e = 0.5 \text{MeV}$

10⁸Tesla=10¹²Gauss: Typical neutron star surface

Super critical magnetic field may have existed in very early Universe. Maybe after EW phase transition? (cf: Vachaspati '91)

Time profile of magnetic fields

Mimicked by

$$eB(t) = \kappa / (t^{2} \sinh^{2} y_{b} + \zeta^{2})^{3/2}$$

$$\zeta = 1 \text{ fm, } eB(0) = m_{\pi}^{2} (10m_{\pi}^{2})$$

beam rapidity $y_{b} = 5.36 (7.98)$

$$\sqrt{s} = 0.2 (2.76) \text{ TeV}$$

