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J/– and (2S) – distributions

background (from K) + BW (free mass & width)

No signal in J/ - (like in Belle), ~2 in (2S)  - : 

< 2.6x10-5 @ 95% CL,           (4.1 ± 1.0 ±1.4) x 10-5

(2S)– mass distribution is statistically consistent 

with Belle (2/ndf=54.7/58)

- K* veto:             M=4437±5, =23±25 MeV, 1.7

- K*(892) + K*
2(1430): M=4483±3, =15±11 MeV, 2.5

B(B0Z–K+(2S)) at M=4430 & =45 MeV:        
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Some Charmonium states discovered at the B factories

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-004
LHCb-PAPER-2011-033

February 21, 2012

Search for the X(4140) state in
B+ � J/⇥�K+ decays

The LHCb collaboration †

Abstract

A search for the X(4140) state in B+ ⇥ J/⇤⇥K+ decays is performed
with 0.37 fb�1 of pp collisions at

⌅
s = 7 TeV collected by the LHCb ex-

periment. No evidence for this state is found, in 2.4� disagreement with
a measurement by CDF. An upper limit on its production rate is set,
B(B+ ⇥ X(4140)K+)� B(X(4140) ⇥ J/⇤⇥)/B(B+ ⇥ J/⇤⇥K+) < 0.07 at 90%
confidence level.

Submitted to Physical Review D Rapid Communications

†Authors are listed on the following pages.
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PEPII @ SLAC

e+ e-  colliders with CM energy of 10.6 GeV
KEKB @ KEK B Z(4430)+ K  S+ K: charged state  not cc!
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 cannot be explained by interf. in K channel

K mass from ±30 MeV Z(4433)+ window

M((2S)+), GeV non-B bgr. from 
E sidebands

S-wave D*D1(2420)            
thresh. effect
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) Detailed study of K– system before 

looking at J/–, (2S)– :

M(K) plot 1) S, P, D wave intensity 

K*(892)+K*(1430)

region

K*(892)+K*(1430)

veto

M((2S)), GeV

4
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3
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J/– and (2S) – distributions

background (from K) + BW (free mass & width)

No signal in J/ - (like in Belle), ~2 in (2S)  - : 

< 2.6x10-5 @ 95% CL,           (4.1 ± 1.0 ±1.4) x 10-5

(2S)– mass distribution is statistically consistent 

with Belle (2/ndf=54.7/58)

- K* veto:             M=4437±5, =23±25 MeV, 1.7

- K*(892) + K*
2(1430): M=4483±3, =15±11 MeV, 2.5

B(B0Z–K+(2S)) at M=4430 & =45 MeV:        

shifted

ICHEP 08, 413 fb-1


K-

 K

K contributions,

2) K is parameterized
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B+ � K+(�J/⇥)

e+e� � �IRS(J/⇤⇥+⇥�)

e+e� � �IRS(⇤⇥⇥+⇥�) e+e� � �IRS(⇤⇥⇥+⇥�)

B̄0 � K�(⇥⇥�+)

B̄0 � K�(⇥c1�
+)

B̄0 � K�(⇥c1�
+) Y (4260) ! (J/ ⇡+)⇡�

   X(3872)   Y(4260)     Z+(4430)

  Y(4360) Y(4660)  Z1+(4050)

 Z+2(4250)   Y(4140)  Zc+(3900)

New charmonium mesons
X(3872): Belle @ KEK (PRL91 (2003))

very narrow (Γ < 2.3 MeV) meson observed in B decay:

B± → K±(J/ψπ+π−)
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X(3872) Mass   (MeV/c
3865 3870 3875 3880

BaBar

D0

CDF II

Belle
 Threshold*0D0D  Threshold*-D+D

PRD 71, 071103 (2005)
[hep-ex/0406022]

PRL 93, 162002 (2004)
[hep-ex/0405004]

PRL 93, 072001 (2004)
[hep-ex/0312021]

PRL 91, 262001 (2003)
[hep-ex/0309032]

confirmed by CDFII, D0, BaBar

M(J/ψπ+π−) = 3871.4 ± 0.6 MeV (world average)

– p.3/34



• All these states decay into J/ψ (ψ’)  ➔ they have a      
or cc  pair in their quark components 

• Their masses are not compatible with quark 
model calculations for charmonium states

• Absence of open charm production in their 
decays is inconsistent with cc interpretation

• Candidates for exotic (not quark-antiquark) states  

Common features



   X(3872) 



X(3872): molecular                             state (Swanson, Close, Voloshin, Wong ...)

M(D∗0D̄0) = (3871 ± 1) ⇒
X(3872) : molecular (D∗0D̄0 + D̄∗0D0) state (Close and Page PLB57(2004))

Tornqwist (ZPC61(94)) predict a D̄D∗ molecule with JP C = 0−+ or 1++

PRL97, 162002 (06) PRD77, 011102 (08)

Mbelle = 3875.2±0.7±0.8 Mbabar = 3875.1±1.1±0.5

higher masses than X → J/ψππ
– p.5/35

M(D∗0D̄0) = (3871 ± 1) ⇒
X(3872) : molecular (D∗0D̄0 + D̄∗0D0) state (Close and Page PLB57(2004))

Tornqwist (ZPC61(94)) predict a D̄D∗ molecule with JP C = 0−+ or 1++

PRL97, 162002 (06) PRD77, 011102 (08)

Mbelle = 3875.2±0.7±0.8 Mbabar = 3875.1±1.1±0.5

higher masses than X → J/ψππ
– p.5/35

Tetraquark state?

Maiani et al. (PRD71 (05)) tetraquark JP C = 1++ states:

Xq = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

isospin eigenstates
↗X(I = 0) = Xu+Xd√

2

↘
X(I = 1) = Xu−Xd√

2

– p.8/35

   X(3872) 



molecular and tetraquark 
interpretations differ by the 
way quarks are organized in 

the state
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higher masses than X → J/ψππ
– p.5/35

Tetraquark state?

Maiani et al. (PRD71 (05)) tetraquark JP C = 1++ states:

Xq = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

isospin eigenstates
↗X(I = 0) = Xu+Xd√
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↘
X(I = 1) = Xu−Xd√

2
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   X(3872) 



Z+(4430)
Belle @ KEK: (arXiv:0708.1790)

distinct peak observed in the
decay mode:

B̄0 → K−(ψ′π+)

Q = + ⇒ minimum quark

content: cc̄ud̄

M = (4433 ± 14) MeV
Γ = (44 ± 17) MeV

JP =??
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Z+(4430) → ψ′π+ ⇒ IG = 1+

M(D̄0
1(2420)D∗+(2010)) = 4430 MeV

– p.26/34

B Z(4430)+ K  S+ K: charged state  not cc!
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M = 443342 MeV

 = 45+18
-13

+30
-13 MeV  narrow 

 cannot be explained by interf. in K channel

K mass from ±30 MeV Z(4433)+ window

M((2S)+), GeV non-B bgr. from 
E sidebands

S-wave D*D1(2420)            
thresh. effect
PRD76,114002

[cu][cd] tetraquark
hep-ph/0708.3997

D*D1(2420)  molecule
0708.4222,0710.1029, 
0711.0494

PRL100, 142001, 605 fb-1
+- J/ ( +-, e+e-)

PRL100(08)142001

charged state ➡    
not a       !cc̄
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distinct peak observed in the
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) Detailed study of K– system before 

looking at J/–, (2S)– :

M(K) plot 1) S, P, D wave intensity 

K*(892)+K*(1430)

region

K*(892)+K*(1430)

veto
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J/– and (2S) – distributions

background (from K) + BW (free mass & width)

No signal in J/ - (like in Belle), ~2 in (2S)  - : 

< 2.6x10-5 @ 95% CL,           (4.1 ± 1.0 ±1.4) x 10-5

(2S)– mass distribution is statistically consistent 

with Belle (2/ndf=54.7/58)

- K* veto:             M=4437±5, =23±25 MeV, 1.7

- K*(892) + K*
2(1430): M=4483±3, =15±11 MeV, 2.5

B(B0Z–K+(2S)) at M=4430 & =45 MeV:        

shifted

ICHEP 08, 413 fb-1


K-

 K

K contributions,

2) K is parameterized

arXiv:0905.2869

searched Z-(4430) in 4 decay modes:
no conclusive

evidence for the existence of Z+(4430) seen by 
Belle
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FIG. 6: The fit results with (solid line) and without (dashed line) Z+ (JP = 1+) in the default model. The points with error
bars are data; the hatched histograms are ψ′ sidebands. Slices are defined in Fig. 5.

TABLE III: The fit fractions and significances of all resonances in the default model.

Resonance
Z(4430)+ : JP = 1+ Z(4430)+ : JP = 0−

Fit fraction Significance Fit fraction Significance

K∗

0 (800) (5.9± 1.6)% 5.5σ (11.7 ± 2.5)% 6.5σ

K∗(892) (59.8± 2.7)% 40.1σ (68.0 ± 2.6)% 41.9σ

K∗(1410) (7.9± 2.4)% 3.1σ (1.8± 1.2)% 0.7σ

K∗

0 (1430) (3.4± 1.2)% 4.5σ (4.2± 1.8)% 3.8σ

K∗

2 (1430) (5.5± 0.9)% 5.5σ (7.4± 0.9)% 6.3σ

K∗(1680) (7.7± 1.6)% 2.9σ (7.3± 2.0)% 2.5σ

Z(4430)+ (6.1+2.1
−1.3)% 6.1σ (2.5+1.1

−0.8)% 4.4σ
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FIG. 7: Projection of the fit results with the K∗ veto. The
legend is the same as in Fig. 6.

The central value is given for the default model with the
Z(4430)+ having JP = 1+. The systematic error in-
cludes contributions from the same sources as the uncer-
tainty in the branching fraction of the B̄0 → ψ′K−π+ de-
cay and the amplitude model dependence of the K∗(892)
fit fraction [(+27.3

−4.3 )%]. We also determine the fraction
of the K∗(892) mesons that are longitudinally polarized:
fL = (41.5+3.1+3.2

−2.3−0.3)%.

The branching fraction product for the Z(4430)+ is

B(B̄0 → Z(4430)+K−)× B(Z(4430)+ → ψ′π+) =

(3.5+1.2+0.4
−0.8−1.3)× 10−5 for JP = 1+ or

(1.5+0.7+0.7
−0.5−0.2)× 10−5 for JP = 0−,

where the systematic error due to the amplitude model
dependence is (+10.3

−37.5)% for the 1+ hypothesis and
(+44.9
−13.4)% for the 0− hypothesis.
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Theoretical side

Introduction 4

the quark level the complex structure of the QCD vac-
uum leads us to employ the Wilson’s operator product
expansion (OPE) (69).

In QCD we only know how to work analitycally in the
perturbative regime. Therefore, the perturbative part of
Π(q) in Eq.(1) can be reliably calculated. However, this
does not yet imply that all important contributions to
the QCD of the sum rule have been taken into account.
The complete calculation has to include the effects due
to the fields of soft gluons and quarks populating the
QCD vacuum. A practical way to calculate the vacuum-
field contributions to the correlation function is through
a generalized Wilson OPE. To apply this method to the
correlation function (1), one has to expand the product
of two currents in a series of local operators:

Π(q) = i

∫

d4x eiq·x〈0|T [j(x)j†(0)|0〉 =
∑

n

Cn(Q2)Ôn ,

(2)
where the set {Ôn} includes all local gauge invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. Eq. (2) is a concise form of
the Wilson OPE. The coefficients Cn(Q2) (Q2 = −q2),
by construction, include only the short-distance domain
and can, therefore, be evaluated perturbatively. Non-
perturbative long-distance effects are contained only in
the local operators. In this expasion, the operators are
ordered according to their dimension n. The lowest-
dimension operator with n = 0 is the unit operator as-
sociated with the perturbative contribution: C0(Q2) =
Πper(Q2), Ô0 = 1. The QCD vacuum fields are repre-
sented in (2) in the form of vacuum condensates. The
lowest dimension condensates are the quark condensate
of dimension three: Ô3 = 〈q̄q〉, and the gluon conden-
sate of dimension four: Ô4 = 〈g2G2〉. The contributions
of higher dimension condensates are suppressed by large
powers of Λ2

QCD/Q2, where 1/ΛQCD is the typical long-
distance scale. Therefore, even at intermediate values of
Q2 (∼ 1 GeV2), the expansion in Eq. (2) can be safely
truncated after a few terms.

The generic correlation function in Eq. (1) has a dis-
persion representation

Π(q2) = −
∫

ds
ρ(s)

q2 − s + iε
+ · · · , (3)

through its discontinuity, ρ(s), on the physical cut. The
dots in Eq. (3) represent subtraction terms.

B. The spectral density

The discontinuity can be written as the imaginary part
of the correlation function:

ρ(s) =
1

π
Im[Π(s)] . (4)

The evaluation of the spectral density (ρ(s)) is simpler
than the evaluation of the correlation function itself, and

the knownledge of ρ(s) allows one to recover the whole
function Π(q2) through the integral in Eq. (3).

The calculation of the phenomenological side proceeds
by inserting intermediate states for the hadron, H , of
interest. The current j (j†) is an operator that anni-
hilates (creates) all hadronic states that have the same
quantum numbers as j. Consequently, Π(q) contains in-
formation about all these hadronic states, including the
low mass hadron of interest. In order for the QCD sum
rule technique to be useful, one must parameterize ρ(s)
with a small number of parameters. The lowest reso-
nance is often fairly narrow, whereas higher-mass states
are broader. Therefore, one can parameterize the spec-
tral density as a single sharp pole representing the lowest
resonance of mass m, plus a smooth continuum repre-
senting higher mass states:

ρ(s) = λ2δ(s − m2) + ρcont(s) , (5)

where λ gives the coupling of the current with the low
mass hadron, H :

〈0|j|H〉 = λ. (6)

For simplicity, one often assumes that the continuum
contribution to the spectral density, ρcont(s) in Eq. (5),
vanishes bellow a certain continuum threshold s0. Above
this threshold, it is assumed to be given by the result
obtained with the OPE. Therefore, one uses the ansatz

ρcont(s) = ρOPE(s)Θ(s − s0) . (7)

C. The mass sum rule

Now one might attempt to match the two descriptions
of the correlator:

Πphen(Q2) ↔ ΠOPE(Q2) . (8)

However, such a matching is not yet practical. The OPE
side is only valid a sufficiently large spacelike Q2. On the
other hand, the phenomenological description is signifi-
cantly dominated by the lowest pole only for sufficiently
small Q2, or better yet, timelike q2 near the pole. To im-
prove the overlap between the two sides of the sum rule,
one applies the Borel transformation

BM2 [Π(q2)] = lim
−q2,n→∞
−q2/n=M2

(−q2)n+1

n!

(

d

dq2

)n

Π(q2) . (9)

Two important examples are:

BM2

[

q2n
]

= 0 , (10)

and

BM2

[

1

(m2 − q2)n

]

=
1

(n − 1)!

e−m2/M2

(M2)n−1
, (11)

Phenomenological side
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of dimension three: Ô3 = 〈q̄q〉, and the gluon conden-
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the knownledge of ρ(s) allows one to recover the whole
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tral density as a single sharp pole representing the lowest
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(2)
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

      : continuum parameters0
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perturbative regime. Therefore, the perturbative part of
Π(q) in Eq.(1) can be reliably calculated. However, this
does not yet imply that all important contributions to
the QCD of the sum rule have been taken into account.
The complete calculation has to include the effects due
to the fields of soft gluons and quarks populating the
QCD vacuum. A practical way to calculate the vacuum-
field contributions to the correlation function is through
a generalized Wilson OPE. To apply this method to the
correlation function (1), one has to expand the product
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where the set {Ôn} includes all local gauge invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. Eq. (2) is a concise form of
the Wilson OPE. The coefficients Cn(Q2) (Q2 = −q2),
by construction, include only the short-distance domain
and can, therefore, be evaluated perturbatively. Non-
perturbative long-distance effects are contained only in
the local operators. In this expasion, the operators are
ordered according to their dimension n. The lowest-
dimension operator with n = 0 is the unit operator as-
sociated with the perturbative contribution: C0(Q2) =
Πper(Q2), Ô0 = 1. The QCD vacuum fields are repre-
sented in (2) in the form of vacuum condensates. The
lowest dimension condensates are the quark condensate
of dimension three: Ô3 = 〈q̄q〉, and the gluon conden-
sate of dimension four: Ô4 = 〈g2G2〉. The contributions
of higher dimension condensates are suppressed by large
powers of Λ2

QCD/Q2, where 1/ΛQCD is the typical long-
distance scale. Therefore, even at intermediate values of
Q2 (∼ 1 GeV2), the expansion in Eq. (2) can be safely
truncated after a few terms.

The generic correlation function in Eq. (1) has a dis-
persion representation

Π(q2) = −
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q2 − s + iε
+ · · · , (3)

through its discontinuity, ρ(s), on the physical cut. The
dots in Eq. (3) represent subtraction terms.

B. The spectral density

The discontinuity can be written as the imaginary part
of the correlation function:

ρ(s) =
1

π
Im[Π(s)] . (4)

The evaluation of the spectral density (ρ(s)) is simpler
than the evaluation of the correlation function itself, and

the knownledge of ρ(s) allows one to recover the whole
function Π(q2) through the integral in Eq. (3).

The calculation of the phenomenological side proceeds
by inserting intermediate states for the hadron, H , of
interest. The current j (j†) is an operator that anni-
hilates (creates) all hadronic states that have the same
quantum numbers as j. Consequently, Π(q) contains in-
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However, such a matching is not yet practical. The OPE
side is only valid a sufficiently large spacelike Q2. On the
other hand, the phenomenological description is signifi-
cantly dominated by the lowest pole only for sufficiently
small Q2, or better yet, timelike q2 near the pole. To im-
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1
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was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iεabcεdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x〈0|T [jµ(x)j†ν(0)]|0〉 = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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jX
µ =

iεabcεdec√
2

[
(qT

a Cγ5cb)(q̄dγµCc̄T
e )+(qT

a Cγµcb)(q̄dγ5Cc̄T
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]
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iεabcεdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x〈0|T [jµ(x)j†ν(0)]|0〉 = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc〈q̄gσ.Gq〉

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates 〈g3G3〉 is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate 〈g3G3〉 $ 1GeV2〈αsG2〉 [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ〈q̄q〉2(s) =
m2

c〈q̄q〉2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix〈q̄q〉
1 (M2) = −

m2
c〈q̄gσ.Gq〉〈q̄q〉

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)

III. LSR PREDICTIONS OF MX
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FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.

6

obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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jX
µ =

iεabcεdec√
2

[
(qT

a Cγ5cb)(q̄dγµCc̄T
e )+(qT

a Cγµcb)(q̄dγ5Cc̄T
e )

]
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iεabcεdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x〈0|T [jµ(x)j†ν(0)]|0〉 = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc〈q̄gσ.Gq〉

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates 〈g3G3〉 is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate 〈g3G3〉 $ 1GeV2〈αsG2〉 [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ〈q̄q〉2(s) =
m2

c〈q̄q〉2
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, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:
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0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:
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X =

∫ s0

4m2
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s ρ(s)
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. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.
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value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
3.7

3.8

3.9

4.0

4.1

4.2

4.3

 s0

1/2 = 4.1 GeV

 s0

1/2 = 4.2 GeV

M
X
 (
G

eV
)

M2 (GeV2 )

5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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QCD sum rules calculation for X(3872)

jX
µ =

iεabcεdec√
2

[
(qT
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a Cγµcb)(q̄dγ5Cc̄T
e )

]
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Introduction 5

for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iεabcεdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x〈0|T [jµ(x)j†ν(0)]|0〉 = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.

Matheus, Narison, MN, Richard: PRD75 (07)

4

where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc〈q̄gσ.Gq〉

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates 〈g3G3〉 is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate 〈g3G3〉 $ 1GeV2〈αsG2〉 [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ〈q̄q〉2(s) =
m2

c〈q̄q〉2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix〈q̄q〉
1 (M2) = −

m2
c〈q̄gσ.Gq〉〈q̄q〉

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)
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FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.
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obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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QCD sum rules calculation for X(3872)
tetraquark state (PRD75 (2007) 014005)

jX = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

mX = (3.92 ± 0.13) GeV

molecular state (arXiv:0803.1168)

jX = D∗0D̄0 + D̄∗0D0

mX = (3.87 ± 0.07) GeV

Better agreement with the molecular model

– p.11/32
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obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
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molecular state (arXiv:0803.1168)

jX = D∗0D̄0 + D̄∗0D0

mX = (3.87 ± 0.07) GeV

Better agreement with the molecular model

– p.11/32

same mass is obtained for Zc+(3900)
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From Eqs. (58) and (61) we get the following relation
between the coupling constants:

gXψωfω

gXψρfρ
=

Nω

(

cosα + sinα
)

Nρ

(

cosα − sinα
) . (62)

Using the previous result in Eq. (41) and the numerical
values for fω and fρ we have

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
# 0.15

(

cosα + sinα

cosα − sinα

)2

. (63)

This is exactly the same relation obtained in refs. [11, 27],
that determines α ∼ 200 for reproducing the experimen-
tal result in Eq.(1).

With this mixing angle α defined, we can now eval-
uate the decay rate itself, for any one of the decays:
X → J/ψρ or X → J/ψω, since they will be the same.
Therefore, we choose to work with X → J/ψω since the
combination cosα + sinα appears in both sides of the
sum rule and the result for gXψω is independent of α.
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FIG. 4: Diagrams which contribute to the OPE side of the sum rule.

In the OPE side we consider condensates up to di-
mension five , as shown in Fig. 4. Taking the limit
p2 = p′2 = −P 2 and doing a single Borel transform to
P 2 → M2, we get in the structure εανσγp′σqγp′µ (the same
considered in ref.[27]) (Q2 = −q2):

C(Q2)
(

e−m2
ψ/M2

− e−m2
X/M2

)

+ B e−s0/M2

=

(Q2 + m2
ω)Π(OPE)(M2, Q2), (64)

where

Π(OPE)(M2, Q2) =
〈q̄q〉

6
√

2π2Q2

[(

m2
0

3Q2
+

− 1

)
∫ u0

4m2
c

du e−u/M2 √

1 − 4m2
c/u

(

1

2
+

m2
c

u

)

+

−
m2

0

16

∫ 1

0
dα

1 + 3α

α
e

−m2
c

α(1−α)M2

]

. (65)

In Eq. (64)

C(Q2) =
6

sin(θ)
mωfω

fψλq

mψ(m2
X − m2

ψ)
gXψω(Q2), (66)

and B gives the contribution of the pole-continuum tran-
sitions [27, 28, 29]. s0 and u0 are the continuum thresh-
olds for X and J/ψ respectively. Notice that in Eq.(65)
we have introduced the form factor gXψω(Q2). This is
because the meson ω is off-shell in the vertex XJ/ψω.

If we parametrize C(Q2) as a monopole:

C(Q2) =
c1

Q2 + c2
, (67)

we can fit the left hand side of Eq. (64) as a function
of Q2 and M2 to the QCDSR results in the right hand
side, obtaining c1, c2 and B. In Fig. 5 we show the
points obtained if we isolate C(Q2) in Eq. (64) and vary
both Q2 and M2. The function C(Q2) (and consequently
gXψω(Q2)) should not depend on M2, so we limit our fit
region to 3.0 GeV2 ≤ M2 ≤ 3.5 GeV2 where C(Q2) is
clearly stable in M2 for all values of Q2.

We do the fitting for s1/2
0 = 4.4 GeV as the results

do not depend much on this parameter, the results are
shown bellow:

c1 = 2.5 × 10−2 GeV7,

c2 = 38 GeV2,

MeV
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The couplings, gXψV , can be evaluated through a
QCDSR calculation for the vertex, X(3872)J/ψV , that
centers in the three-point function given by

Πµνα(p, p′, q) =

∫

d4xd4y eip′.x eiq.yΠµνα(x, y), (44)

with

Πµνα(x, y) = 〈0|T [jψ
µ (x)jV

ν (y)jX
α

†
(0)]|0〉, (45)

where p = p′ + q and the interpolating fields are given
by:

jψ
µ = c̄aγµca, (46)

jV
ν =

NV

2
(ūaγνua + (−1)IV d̄aγνda), (47)

with Nρ = 1, Iρ = 1, Nω = 1/3 and Iω = 0. If X(3872)
is a pure D0D̄∗0 molecule, jX

α is given by Eq. (8). In this
case the only difference in the OPE side of the sum rule
is the factor NV and, therefore, regardless the approxi-
mations made in the OPE side and the number of terms
considered in the sum rule one has

ΠV
µνα(p, p′, q) = NV Π

OPE
µνα (p, p′, q). (48)

To evaluate the phenomenological side of the sum rule
we insert, in Eq.(45), intermediate states for X , J/ψ and
V . We get [33]:

Π(phen)
µνα (p, p′, q) =

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

×
(

− εαµνσ(p′σ + qσ) − εαµσγ p′σqγqν

m2
V

− εανσγ p′σqγp′µ
m2

ψ

)

. (49)

Therefore, for a given structure the sum rule is given
by:

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

= NVΠ
OPE(p, p′, q),(50)

from where, considering mρ % mω one gets:

gXψωfω

gXψρfρ
=

Nω

Nρ
=

1

3
. (51)

Using fρ = 157 MeV and fω = 46 MeV we obtain

gXψω

gXψρ
= 1.14, (52)

and using this result in Eq. (43) we finally get

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
% 0.15. (53)

It is very important to notice that this is a very gen-
eral result that does not depend on any approximation
in the QCDSR. This result shows that the admixture of
ρJ/ψ and ωJ/ψ components in the molecular model of
ref.[19] is indeed very important to reproduce the data in
Eq. (1). It is also important to notice that, in a QCDSR
calculation of the decay rate X → J/ψV , the cc̄ admix-
ture in the D0D̄∗0 molecule, as given by Eq. (10), does
not solve the problem of geting the ratio in Eq.(1). This
can be seen by using, in Eq. (45), jX

α = Ju
α , with Ju

α given
by Eq. (10). One gets:

Πµνα(x, y) =
〈ūu〉
2
√

6
cos(θ)Πcc̄

µνα(x, y)

+ sin(θ)Πmol
µνα(x, y), (54)

where

Πcc̄
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j

′(2)
α

†
(0)]|0〉, (55)

and

Πmol
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j(4u)

α
†
(0)]|0〉, (56)

with j
′(2)
α and j(4u)

α given by Eqs. (7) and (8). Using the
currents in Eqs.(47) and (46) for the mesons V and J/ψ,
it is easy to see that

Πcc̄
µνα(x, y) =

NV

2
Tr [γµSc

ac(x)γαγ5S
c
ca(−x)] ×

× Tr
[

γνSu
bb(0) + (−1)IV γνSd

bb(0)
]

.(57)

For V = ρ with Iρ = 1 the result in Eq. (57) is obvi-
ously zero due to isospin conservation, in the case that
the quark u and d are degenerate. However, even for
V = ω (Iω = 0), the result in Eq. (57) is zero be-
cause Tr [γµSq

bb(0)] = 0. Therefore, in the OPE side,
the three-point function is given only by the molecular
part of the current in Eq (10):

Πµνα(x, y) = sin(θ)Πmol
µνα(x, y), (58)

that can not reproduce the experimental observation in
Eq. (1), as demonstrated above.

In the following, to be able to reproduce the data in
Eq.(1), instead of the admixture of ρJ/ψ and ωJ/ψ com-
ponents to the D0D̄∗0 molecule, as done by Swanson
[19], we will consider a small admixture of D+D∗− and
D−D∗+ components. In this case, instead of Eq.(10) we
have

jX
µ (x) = cosαJu

µ (x) + sinαJd
µ(x), (59)

with Ju
µ (x) and Jd

µ(x) given by Eq.(10).
If we consider the quarks u and d to be degenerate,

i.e., mu = md and 〈ūu〉 = 〈d̄d〉, the change in Eq.(10)
to Eq.(59) does not make any difference in the results in
Sec. III.

Dias, Navarra, MN, Zanetti
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we

3

have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
qνp′µp

′
α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:

Π(OPE) =
〈q̄gσ.Gq〉
12

√
2π2

1

q2

∫ 1

0
dα

α(1 − α)

m2
c − α(1− α)p′2

. (8)

Isolating the qνp′µp
′
α structure in Eq. (5) and making a

single Borel transformation to both P 2 = P ′2 → M2, we
finally get the sum rule:

A
(

e−m2
ψ/M

2

− e−m2
Zc

/M2
)

+B e−s0/M
2

=

=
〈q̄gσ.Gq〉
12

√
2π2

∫ 1

0
dα e

−m2
c

α(1−α)M2 , (9)

where s0 is the continuum threshold parameter for Zc,

A =
gZcψπλZcfψFπ (m2

Zc
+m2

ψ)

2m2
Zc
mψ(m2

Zc
−m2

ψ)
, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).

GeV2, which is the range where the two-point function
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we

Phen. side
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The couplings, gXψV , can be evaluated through a
QCDSR calculation for the vertex, X(3872)J/ψV , that
centers in the three-point function given by

Πµνα(p, p′, q) =

∫

d4xd4y eip′.x eiq.yΠµνα(x, y), (44)

with

Πµνα(x, y) = 〈0|T [jψ
µ (x)jV

ν (y)jX
α

†
(0)]|0〉, (45)

where p = p′ + q and the interpolating fields are given
by:

jψ
µ = c̄aγµca, (46)

jV
ν =

NV

2
(ūaγνua + (−1)IV d̄aγνda), (47)

with Nρ = 1, Iρ = 1, Nω = 1/3 and Iω = 0. If X(3872)
is a pure D0D̄∗0 molecule, jX

α is given by Eq. (8). In this
case the only difference in the OPE side of the sum rule
is the factor NV and, therefore, regardless the approxi-
mations made in the OPE side and the number of terms
considered in the sum rule one has

ΠV
µνα(p, p′, q) = NV Π

OPE
µνα (p, p′, q). (48)

To evaluate the phenomenological side of the sum rule
we insert, in Eq.(45), intermediate states for X , J/ψ and
V . We get [33]:

Π(phen)
µνα (p, p′, q) =

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

×
(

− εαµνσ(p′σ + qσ) − εαµσγ p′σqγqν

m2
V

− εανσγ p′σqγp′µ
m2

ψ

)

. (49)

Therefore, for a given structure the sum rule is given
by:

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

= NVΠ
OPE(p, p′, q),(50)

from where, considering mρ % mω one gets:

gXψωfω

gXψρfρ
=

Nω

Nρ
=

1

3
. (51)

Using fρ = 157 MeV and fω = 46 MeV we obtain

gXψω

gXψρ
= 1.14, (52)

and using this result in Eq. (43) we finally get

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
% 0.15. (53)

It is very important to notice that this is a very gen-
eral result that does not depend on any approximation
in the QCDSR. This result shows that the admixture of
ρJ/ψ and ωJ/ψ components in the molecular model of
ref.[19] is indeed very important to reproduce the data in
Eq. (1). It is also important to notice that, in a QCDSR
calculation of the decay rate X → J/ψV , the cc̄ admix-
ture in the D0D̄∗0 molecule, as given by Eq. (10), does
not solve the problem of geting the ratio in Eq.(1). This
can be seen by using, in Eq. (45), jX

α = Ju
α , with Ju

α given
by Eq. (10). One gets:

Πµνα(x, y) =
〈ūu〉
2
√

6
cos(θ)Πcc̄

µνα(x, y)

+ sin(θ)Πmol
µνα(x, y), (54)

where

Πcc̄
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j

′(2)
α

†
(0)]|0〉, (55)

and

Πmol
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j(4u)

α
†
(0)]|0〉, (56)

with j
′(2)
α and j(4u)

α given by Eqs. (7) and (8). Using the
currents in Eqs.(47) and (46) for the mesons V and J/ψ,
it is easy to see that

Πcc̄
µνα(x, y) =

NV

2
Tr [γµSc

ac(x)γαγ5S
c
ca(−x)] ×

× Tr
[

γνSu
bb(0) + (−1)IV γνSd

bb(0)
]

.(57)

For V = ρ with Iρ = 1 the result in Eq. (57) is obvi-
ously zero due to isospin conservation, in the case that
the quark u and d are degenerate. However, even for
V = ω (Iω = 0), the result in Eq. (57) is zero be-
cause Tr [γµSq

bb(0)] = 0. Therefore, in the OPE side,
the three-point function is given only by the molecular
part of the current in Eq (10):

Πµνα(x, y) = sin(θ)Πmol
µνα(x, y), (58)

that can not reproduce the experimental observation in
Eq. (1), as demonstrated above.

In the following, to be able to reproduce the data in
Eq.(1), instead of the admixture of ρJ/ψ and ωJ/ψ com-
ponents to the D0D̄∗0 molecule, as done by Swanson
[19], we will consider a small admixture of D+D∗− and
D−D∗+ components. In this case, instead of Eq.(10) we
have

jX
µ (x) = cosαJu

µ (x) + sinαJd
µ(x), (59)

with Ju
µ (x) and Jd

µ(x) given by Eq.(10).
If we consider the quarks u and d to be degenerate,

i.e., mu = md and 〈ūu〉 = 〈d̄d〉, the change in Eq.(10)
to Eq.(59) does not make any difference in the results in
Sec. III.

Dias, Navarra, MN, Zanetti
arXiv:1304.6433
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we

3

have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
qνp′µp

′
α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:

Π(OPE) =
〈q̄gσ.Gq〉
12

√
2π2

1

q2

∫ 1

0
dα

α(1 − α)

m2
c − α(1− α)p′2

. (8)

Isolating the qνp′µp
′
α structure in Eq. (5) and making a

single Borel transformation to both P 2 = P ′2 → M2, we
finally get the sum rule:

A
(

e−m2
ψ/M

2

− e−m2
Zc

/M2
)

+B e−s0/M
2

=

=
〈q̄gσ.Gq〉
12

√
2π2

∫ 1

0
dα e

−m2
c

α(1−α)M2 , (9)

where s0 is the continuum threshold parameter for Zc,

A =
gZcψπλZcfψFπ (m2

Zc
+m2

ψ)

2m2
Zc
mψ(m2

Zc
−m2

ψ)
, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).

GeV2, which is the range where the two-point function
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we

Phen. side

coupling constant



Decay width   Z+ → J/ψπ+

6

The couplings, gXψV , can be evaluated through a
QCDSR calculation for the vertex, X(3872)J/ψV , that
centers in the three-point function given by

Πµνα(p, p′, q) =

∫

d4xd4y eip′.x eiq.yΠµνα(x, y), (44)

with

Πµνα(x, y) = 〈0|T [jψ
µ (x)jV

ν (y)jX
α

†
(0)]|0〉, (45)

where p = p′ + q and the interpolating fields are given
by:

jψ
µ = c̄aγµca, (46)

jV
ν =

NV

2
(ūaγνua + (−1)IV d̄aγνda), (47)

with Nρ = 1, Iρ = 1, Nω = 1/3 and Iω = 0. If X(3872)
is a pure D0D̄∗0 molecule, jX

α is given by Eq. (8). In this
case the only difference in the OPE side of the sum rule
is the factor NV and, therefore, regardless the approxi-
mations made in the OPE side and the number of terms
considered in the sum rule one has

ΠV
µνα(p, p′, q) = NV Π

OPE
µνα (p, p′, q). (48)

To evaluate the phenomenological side of the sum rule
we insert, in Eq.(45), intermediate states for X , J/ψ and
V . We get [33]:

Π(phen)
µνα (p, p′, q) =

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

×
(

− εαµνσ(p′σ + qσ) − εαµσγ p′σqγqν

m2
V

− εανσγ p′σqγp′µ
m2

ψ

)

. (49)

Therefore, for a given structure the sum rule is given
by:

iλXmψfψmV fV gXψV

(p2 − m2
X)(p′2 − m2

ψ)(q2 − m2
V )

= NVΠ
OPE(p, p′, q),(50)

from where, considering mρ % mω one gets:

gXψωfω

gXψρfρ
=

Nω

Nρ
=

1

3
. (51)

Using fρ = 157 MeV and fω = 46 MeV we obtain

gXψω

gXψρ
= 1.14, (52)

and using this result in Eq. (43) we finally get

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
% 0.15. (53)

It is very important to notice that this is a very gen-
eral result that does not depend on any approximation
in the QCDSR. This result shows that the admixture of
ρJ/ψ and ωJ/ψ components in the molecular model of
ref.[19] is indeed very important to reproduce the data in
Eq. (1). It is also important to notice that, in a QCDSR
calculation of the decay rate X → J/ψV , the cc̄ admix-
ture in the D0D̄∗0 molecule, as given by Eq. (10), does
not solve the problem of geting the ratio in Eq.(1). This
can be seen by using, in Eq. (45), jX

α = Ju
α , with Ju

α given
by Eq. (10). One gets:

Πµνα(x, y) =
〈ūu〉
2
√

6
cos(θ)Πcc̄

µνα(x, y)

+ sin(θ)Πmol
µνα(x, y), (54)

where

Πcc̄
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j

′(2)
α

†
(0)]|0〉, (55)

and

Πmol
µνα(x, y) = 〈0|T [jψ

µ (x)jV
ν (y)j(4u)

α
†
(0)]|0〉, (56)

with j
′(2)
α and j(4u)

α given by Eqs. (7) and (8). Using the
currents in Eqs.(47) and (46) for the mesons V and J/ψ,
it is easy to see that

Πcc̄
µνα(x, y) =

NV

2
Tr [γµSc

ac(x)γαγ5S
c
ca(−x)] ×

× Tr
[

γνSu
bb(0) + (−1)IV γνSd

bb(0)
]

.(57)

For V = ρ with Iρ = 1 the result in Eq. (57) is obvi-
ously zero due to isospin conservation, in the case that
the quark u and d are degenerate. However, even for
V = ω (Iω = 0), the result in Eq. (57) is zero be-
cause Tr [γµSq

bb(0)] = 0. Therefore, in the OPE side,
the three-point function is given only by the molecular
part of the current in Eq (10):

Πµνα(x, y) = sin(θ)Πmol
µνα(x, y), (58)

that can not reproduce the experimental observation in
Eq. (1), as demonstrated above.

In the following, to be able to reproduce the data in
Eq.(1), instead of the admixture of ρJ/ψ and ωJ/ψ com-
ponents to the D0D̄∗0 molecule, as done by Swanson
[19], we will consider a small admixture of D+D∗− and
D−D∗+ components. In this case, instead of Eq.(10) we
have

jX
µ (x) = cosαJu

µ (x) + sinαJd
µ(x), (59)

with Ju
µ (x) and Jd

µ(x) given by Eq.(10).
If we consider the quarks u and d to be degenerate,

i.e., mu = md and 〈ūu〉 = 〈d̄d〉, the change in Eq.(10)
to Eq.(59) does not make any difference in the results in
Sec. III.
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we
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have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
qνp′µp

′
α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:

Π(OPE) =
〈q̄gσ.Gq〉
12

√
2π2

1

q2

∫ 1

0
dα

α(1 − α)

m2
c − α(1− α)p′2

. (8)

Isolating the qνp′µp
′
α structure in Eq. (5) and making a

single Borel transformation to both P 2 = P ′2 → M2, we
finally get the sum rule:

A
(

e−m2
ψ/M

2

− e−m2
Zc

/M2
)

+B e−s0/M
2

=

=
〈q̄gσ.Gq〉
12

√
2π2

∫ 1

0
dα e

−m2
c

α(1−α)M2 , (9)

where s0 is the continuum threshold parameter for Zc,

A =
gZcψπλZcfψFπ (m2

Zc
+m2

ψ)

2m2
Zc
mψ(m2

Zc
−m2

ψ)
, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0

2 2.2 2.4 2.6 2.8 3
M2(GeV 2)
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).

GeV2, which is the range where the two-point function

OPE side
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based on the fact that the mass difference correspond-
ing to a radial excitation in the charmonium sector is
given by MΨ(2S) − MΨ(1S) = 590 MeV. This number is
close to the mass difference MZ+(4430)−MX+(3872) = 560
MeV. The very same connection between Z+(4430) and
Zc(3900) was found in the hadro-charmonium approach
[15], where the former is essentially a Ψ′ embedded in
light mesonic matter and the latter a J/ψ also embedded
in light mesonic matter. In a straightforward extension
of this reasoning to the bottom sector, in [12] it was con-
jectured that the Z+

b (10610), observed by the BELLE
collaboration in [16], may be a radial excitation of an
yet unmeasured X+

b . The observation of Z+
c (3900) gives

support to this conjecture and should motivate new ex-
perimental searches of this bottom charged state and its
neutral partner, the only missing states in the diagram.

FIG. 1. Charm and bottom energy levels in the mass region
of interest. Masses are in MeV. On the two left columns
we show the conjecture presented in [13]. The Z+

c (3900) is
conjectured to be the charged partner of the X(3872). On
the two right columns we show the conjecture advanced in
[12] for the bottom sector, where the Xb(?) and X+

b (?) are
the proposed states.

There are also other suppositions according to which
the Z+

c (3900) should be the charmed partner of the
Z+
b (10610). In this scheme, there should exist another

charged state, called Z
′

c, that would be the charmed part-
ner of the Z+

b (10650) [15, 17, 18].

In this work we use the method of QCD sum rules
(QCDSR) [19–21] to study some hadronic decays of
Zc(3900), considering Zc as a four-quark state.

II. Z+
c (3900) → J/ψ π+ DECAY WIDTH

The QCDSR were used in ref. [22] to study the
X(3872) meson considered as a IG(JPC) = 0+(1++)
four-quark state, and a good agreement with the exper-
imental mass was obtained. The Zc(3900) is interpreted
here as the isospin 1 partner of the X(3872). As in
[13, 17] we assume the quantum numbers for the neutral
state in the isospin multiplet to be IG(JPC) = 1+(1+−).
Therefore, the interpolating field for Z+

c (3900) is given
by:

jα =
iεabcεdec√

2
[(uT

aCγ5cb)(d̄dγαCc̄Te )−(uT
aCγαcb)(d̄dγ5Cc̄Te )] ,

(1)
where a, b, c, ... are color indices, and C is the charge
conjugation matrix. Considering SU(2) symmetry, the
mass obtained in QCDSR for the Zc state is exactly the
same one obtained for the X(3872), as it happens in the
case of ρ and ω states. There are also QCDSR calcu-
lations for the Zc state considered as a D̄D∗ molecular
state [23, 24]. These calculations only confirm the results
presented in refs. [22, 25]. Therefore here we evaluate
only the decay width.
We start with the Z+

c (3900) → J/ψ π+ decay. The
QCDSR calculation of the vertex Zc(3900)J/ψπ is based
on the three-point function given by:

Πµνα(p, p
′, q) =

∫

d4x d4y eip
′.x eiq.y Πµνα(x, y), (2)

with Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν (y)j†α(0)]|0〉, where p =
p′+q and the interpolating fields for J/ψ and π are given
by:

jψµ = c̄aγµca, (3)

jπ5ν = d̄aγ5γνua, (4)

In order to evaluate the phenomenological side of the sum
rule we insert intermediate states for Zc, J/ψ and π into
Eq.(2). We get:

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q
2)qν

(p2 −m2
Zc
)(p′2 −m2

ψ)(q
2 −m2

π)
(

−gµλ +
p′µp

′
λ

m2
ψ

)

(

−gλα +
pαpλ

m2
Zc

)

+ · · · ,(5)

where the dots stand for the contribution of all possible
excited states. The form factor, gZcψπ(q

2), is defined as
the generalization of the on-mass-shell matrix element,
〈J/ψ π |Zc〉, for an off-shell pion:

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q
2)ε∗λ(p

′)ελ(p), (6)

where εα(p), εµ(p′) are the polarization vectors of the
Zc and J/ψ mesons respectively. In deriving Eq. (5) we

Phen. side

coupling constant
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for X(3872) (which is the same for Zc(3900)) shows good
OPE convergence and where the pole contribution is big-
ger than the continuum contribution [22]. In Fig. 3 we
show, through the circles, the right-hand side (RHS) of
Eq.(9), as a function of the Borel mass.
To determine the coupling constant gZcψπ we fit the

QCDSR results with the analytical expression in the
left-hand side (LHS) of Eq.(9), and find (using ∆s0 =
0.5 GeV): A = 1.46 × 10−4 GeV5 and B = −8.44 ×
10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
3.89 GeV, which is in excellent agreement with the es-
timate made in [17], based on dimensional arguments.
Considering the uncertainties given above, we finally find:

gZcψπ = (3.89± 0.56) GeV. (12)

The decay width is given by [17]:

Γ(Z+
c (3900)→ J/ψπ+) =

p∗(mZc ,mψ,mπ)

8πm2
Zc

×
1

3
g2Zcψπ

(

3 +
(p∗(mZc ,mψ,mπ))2

m2
ψ

)

, (13)

where

p∗(a, b, c) =

√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
.

(14)

Therefore we obtain:

Γ(Z+
c (3900) → J/ψπ+) = (29.1± 8.2) MeV. (15)

III. Z+
c (3900) → ηc ρ

+ DECAY WIDTH

Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j
†
α(0)]|0〉, (16)

with

jηc5 = ic̄aγ5ca, and jρµ = d̄aγµua. (17)

In this case the phenomenological side is

Π(phen)
µα (p, p′, q) =

−iλZcmρfρfηcm
2
ηc gZcηcρ(q

2)

2mc(p2 −m2
Zc
)(p′2 −m2

ηc)(q
2 −m2

ρ)

×
(

−gµλ +
qµqλ
m2
ρ

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · , (18)

where now we have used the definitions:

〈0|jρµ|ρ(q)〉 = mρfρεµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc
. (19)

In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2

1

q2

∫ 1

0
dα

1

m2
c − α(1− α)p′2

.

(20)
Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:

C
(

e−m2
ηc

/M2

− e−m2
Zc

/M2
)

+D e−s0/M
2

=

Q2 +m2
ρ

Q2

mc〈q̄gσ.Gq〉
48

√
2π2

∫ 1

0
dα

e
−m2

c
α(1−α)M2

α(1 − α)
, (21)

with Q2 = −q2 and

C =
gZcηcρ(Q

2)λZcmρfρfηcm
2
ηc

2mcm2
Zc
(m2

Zc
−m2

ηc)
. (22)

We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect

FIG. 4. QCDSR results for the form factor gZcηcρ(Q
2) as a

function of Q2 and M2 for ∆s0 = 0.5 GeV.

to M2 to eliminate D from Eq. (21) and to isolate
gZcηcρ(Q

2). In Fig. 4 we show gZcηcρ(Q
2) as a function

of both M2 and Q2. A good Borel window is determined
when the parameter to be extracted from the sum rule
is as much independent of the Borel mass as possible.
Therefore, from Fig. 4 we notice that the Borel window
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have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-
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are expected when the coupling constant is obtained from
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states we mean that the initial state contains the same
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in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-
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and B is a parameter introduced to take into account
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we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).
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for X(3872) (which is the same for Zc(3900)) shows good
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ger than the continuum contribution [22]. In Fig. 3 we
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10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
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Considering the uncertainties given above, we finally find:
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1
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ψ
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, (13)

where

p∗(a, b, c) =

√
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2a
.

(14)

Therefore we obtain:
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III. Z+
c (3900) → ηc ρ

+ DECAY WIDTH

Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using
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†
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with
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+ · · · , (18)

where now we have used the definitions:
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〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc
. (19)

In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:
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(20)
Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:
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with Q2 = −q2 and

C =
gZcηcρ(Q

2)λZcmρfρfηcm
2
ηc

2mcm2
Zc
(m2

Zc
−m2

ηc)
. (22)

We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect

FIG. 4. QCDSR results for the form factor gZcηcρ(Q
2) as a

function of Q2 and M2 for ∆s0 = 0.5 GeV.

to M2 to eliminate D from Eq. (21) and to isolate
gZcηcρ(Q

2). In Fig. 4 we show gZcηcρ(Q
2) as a function

of both M2 and Q2. A good Borel window is determined
when the parameter to be extracted from the sum rule
is as much independent of the Borel mass as possible.
Therefore, from Fig. 4 we notice that the Borel window



3

have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
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in the final state. This happens because, although the
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mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
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and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
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be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
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As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
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and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
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(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
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QCDSR results through the LHS of Eq.(9).
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are expected when the coupling constant is obtained from
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states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
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where s0 is the continuum threshold parameter for Zc,
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gZcψπλZcfψFπ (m2
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, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
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The meson-current coupling, λZc , defined in Eq.(7), can
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we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).

GeV2, which is the range where the two-point function
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for X(3872) (which is the same for Zc(3900)) shows good
OPE convergence and where the pole contribution is big-
ger than the continuum contribution [22]. In Fig. 3 we
show, through the circles, the right-hand side (RHS) of
Eq.(9), as a function of the Borel mass.
To determine the coupling constant gZcψπ we fit the

QCDSR results with the analytical expression in the
left-hand side (LHS) of Eq.(9), and find (using ∆s0 =
0.5 GeV): A = 1.46 × 10−4 GeV5 and B = −8.44 ×
10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
3.89 GeV, which is in excellent agreement with the es-
timate made in [17], based on dimensional arguments.
Considering the uncertainties given above, we finally find:

gZcψπ = (3.89± 0.56) GeV. (12)

The decay width is given by [17]:
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.

(14)

Therefore we obtain:

Γ(Z+
c (3900) → J/ψπ+) = (29.1± 8.2) MeV. (15)
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Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j
†
α(0)]|0〉, (16)

with

jηc5 = ic̄aγ5ca, and jρµ = d̄aγµua. (17)
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In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:
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Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:
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with Q2 = −q2 and
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We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect
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2). In Fig. 4 we show gZcηcρ(Q
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of both M2 and Q2. A good Borel window is determined
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is as much independent of the Borel mass as possible.
Therefore, from Fig. 4 we notice that the Borel window
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from a Breit-Wigner centered at 3871.68 MeV with Γ(3872) = 1.2 MeV (the
experimental resolution) and MD0 +MD∗0 < MX < MB −MK . We get:

gXDD∗ = 2.5 GeV

Next, we assume gZ+
c DD̄∗ " gXDD̄∗ and obtain:

Γ(Z+
c → D+D̄∗0, D̄0D∗+) ≈ 4 MeV (4)

For the other decay modes we offer the following estimate:

1. Γ(Z+
c → J/ψ π+) ≈ 29 MeV

2. Γ(Z+
c → ψ(2S) π+) ≈ 6 MeV

3. Γ(Z+
c → ηc ρ+) ≈ 19 MeV

We rely on a rough dimensional argument adopting g ≈ MZ+
c
≈ 3.9 GeV for

the unknown couplings. All in all, we get to a total width of 60 MeV.
As for the JPC = 1+− neutral state we have four DD̄∗ decay modes,

D0D̄∗0, etc., which give a width of 7 MeV. Including the decay into J/ψ η
(assuming maximal isospin breaking) and the same decays as for the charged
component we estimate a total width Γ(Z0

c ) ≈ 80 MeV.
In the case of (Z ′

c)
+ we will use g ≈ M(Z′

c)+ ≈ 3.8 GeV for the unknown
couplings. The charged state widths can be estimated as:

1. Γ((Z ′
c)

+ → J/ψ π+) ≈ 24 MeV

2. Γ((Z ′
c)

+ → ηc ρ+) ≈ 6 MeV

Accounting for a total width of Γ((Z ′
c)

+) ≈ 30 MeV.
The Z ′

c neutral state also has the isospin violating decay (Z ′
c)

0 → J/ψ η
for which we get Γ ≈ 12 MeV. Therefore for the neutral state we can estimate
a total width of Γ((Z ′

c)
0) ≈ 40 MeV.

Given our ignorance on the couplings, these results have to be taken as
mere order of magnitude estimates.

Nevertheless it should be remarked that the assumption gZ+
c DD̄∗ " gXDD̄∗

leads to a B
(

Z+
c → DD̄∗

)

∼ 10%. On the countrary, in the molecular pic-
ture, the decay of the molecule into its open charm constituents should be
dominant over the short-range decays into charmonium and light mesons [16,
17], for example, in the case of the X, it is known that B

(

X(3872) → DD̄∗
)

∼
70% and this is considered as one of the hints in favor of its molecular de-
scription.

9

“We rely on a rough dimensional argument        
adopting                                     ”g ⇠ MZ+

c
⇠ 3.9 GeV



   Not good!



“You should do calculations, like my 
friends, instead of relying in rough 

dimensional arguments “                                    

   Not good!



⇧
µ↵

(p, p0, q) =

Z
d

4
xd

4
ye

ip

0
.x

e

iqy ⇧
µ↵

(x, y)

⇧µ↵(x, y) = h0|T [j⌘c
5 (x)j⇢µj

†
↵(0)]0i

Decay width   Z+ → ηc ρ+

Phen. side: OPE side:

4

for X(3872) (which is the same for Zc(3900)) shows good
OPE convergence and where the pole contribution is big-
ger than the continuum contribution [22]. In Fig. 3 we
show, through the circles, the right-hand side (RHS) of
Eq.(9), as a function of the Borel mass.
To determine the coupling constant gZcψπ we fit the

QCDSR results with the analytical expression in the
left-hand side (LHS) of Eq.(9), and find (using ∆s0 =
0.5 GeV): A = 1.46 × 10−4 GeV5 and B = −8.44 ×
10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
3.89 GeV, which is in excellent agreement with the es-
timate made in [17], based on dimensional arguments.
Considering the uncertainties given above, we finally find:

gZcψπ = (3.89± 0.56) GeV. (12)

The decay width is given by [17]:

Γ(Z+
c (3900)→ J/ψπ+) =

p∗(mZc ,mψ,mπ)

8πm2
Zc

×
1

3
g2Zcψπ

(

3 +
(p∗(mZc ,mψ,mπ))2

m2
ψ

)

, (13)

where

p∗(a, b, c) =

√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
.

(14)

Therefore we obtain:

Γ(Z+
c (3900) → J/ψπ+) = (29.1± 8.2) MeV. (15)

III. Z+
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+ DECAY WIDTH

Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j
†
α(0)]|0〉, (16)

with

jηc5 = ic̄aγ5ca, and jρµ = d̄aγµua. (17)

In this case the phenomenological side is
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+ · · · , (18)

where now we have used the definitions:

〈0|jρµ|ρ(q)〉 = mρfρεµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc
. (19)

In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:

Π(OPE) =
−imc〈q̄gσ.Gq〉
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c − α(1− α)p′2
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(20)
Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:
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We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
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In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
−imc〈q̄gσ.Gq〉
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Isolating the p′µp
′
α structure in Eq. (30) and making a

FIG. 6. QCDSR results for the form factor gZcDD∗(Q2) as a
function of Q2 and M2 for ∆s0 = 0.5 GeV.
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Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (27)

where

jD5 = id̄aγ5ca, and jD
∗

µ = c̄aγµua. (28)

Using the definitions

〈0|jD
∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
fDm2

D

mc
, (29)

the phenomenological side is given by

Π(phen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm2
D gZcDD∗(q2)

mc(p2 −m2
Zc
)(p′2 −m2

D∗)(q2 −m2
D)

×
(

−gµλ +
p′µp

′
λ

m2
D∗

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · . (30)

In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2

[

1

m2
c − q2

∫ 1

0
dα

α(2 + α)

m2
c − (1− α)p′2

−
1
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]

. (31)

Isolating the p′µp
′
α structure in Eq. (30) and making a

FIG. 6. QCDSR results for the form factor gZcDD∗(Q2) as a
function of Q2 and M2 for ∆s0 = 0.5 GeV.
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for X(3872) (which is the same for Zc(3900)) shows good
OPE convergence and where the pole contribution is big-
ger than the continuum contribution [22]. In Fig. 3 we
show, through the circles, the right-hand side (RHS) of
Eq.(9), as a function of the Borel mass.
To determine the coupling constant gZcψπ we fit the

QCDSR results with the analytical expression in the
left-hand side (LHS) of Eq.(9), and find (using ∆s0 =
0.5 GeV): A = 1.46 × 10−4 GeV5 and B = −8.44 ×
10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
3.89 GeV, which is in excellent agreement with the es-
timate made in [17], based on dimensional arguments.
Considering the uncertainties given above, we finally find:

gZcψπ = (3.89± 0.56) GeV. (12)

The decay width is given by [17]:

Γ(Z+
c (3900)→ J/ψπ+) =

p∗(mZc ,mψ,mπ)

8πm2
Zc

×
1

3
g2Zcψπ

(

3 +
(p∗(mZc ,mψ,mπ))2

m2
ψ

)

, (13)

where

p∗(a, b, c) =

√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
.

(14)

Therefore we obtain:

Γ(Z+
c (3900) → J/ψπ+) = (29.1± 8.2) MeV. (15)

III. Z+
c (3900) → ηc ρ

+ DECAY WIDTH

Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j
†
α(0)]|0〉, (16)

with

jηc5 = ic̄aγ5ca, and jρµ = d̄aγµua. (17)

In this case the phenomenological side is

Π(phen)
µα (p, p′, q) =

−iλZcmρfρfηcm
2
ηc gZcηcρ(q

2)

2mc(p2 −m2
Zc
)(p′2 −m2

ηc)(q
2 −m2

ρ)

×
(

−gµλ +
qµqλ
m2
ρ

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · , (18)

where now we have used the definitions:

〈0|jρµ|ρ(q)〉 = mρfρεµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc
. (19)

In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2

1

q2

∫ 1

0
dα

1

m2
c − α(1− α)p′2

.

(20)
Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:

C
(

e−m2
ηc

/M2

− e−m2
Zc

/M2
)

+D e−s0/M
2

=

Q2 +m2
ρ
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48

√
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0
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e
−m2

c
α(1−α)M2

α(1 − α)
, (21)

with Q2 = −q2 and

C =
gZcηcρ(Q

2)λZcmρfρfηcm
2
ηc

2mcm2
Zc
(m2

Zc
−m2

ηc)
. (22)

We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect

FIG. 4. QCDSR results for the form factor gZcηcρ(Q
2) as a

function of Q2 and M2 for ∆s0 = 0.5 GeV.

to M2 to eliminate D from Eq. (21) and to isolate
gZcηcρ(Q

2). In Fig. 4 we show gZcηcρ(Q
2) as a function

of both M2 and Q2. A good Borel window is determined
when the parameter to be extracted from the sum rule
is as much independent of the Borel mass as possible.
Therefore, from Fig. 4 we notice that the Borel window
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (27)

where

jD5 = id̄aγ5ca, and jD
∗

µ = c̄aγµua. (28)

Using the definitions

〈0|jD
∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
fDm2

D

mc
, (29)

the phenomenological side is given by

Π(phen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm2
D gZcDD∗(q2)

mc(p2 −m2
Zc
)(p′2 −m2

D∗)(q2 −m2
D)

×
(

−gµλ +
p′µp

′
λ

m2
D∗

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · . (30)

In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2

[

1

m2
c − q2

∫ 1

0
dα
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m2
c − (1− α)p′2

−
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]

. (31)

Isolating the p′µp
′
α structure in Eq. (30) and making a
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (27)

where

jD5 = id̄aγ5ca, and jD
∗

µ = c̄aγµua. (28)

Using the definitions

〈0|jD
∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
fDm2

D

mc
, (29)

the phenomenological side is given by

Π(phen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm2
D gZcDD∗(q2)

mc(p2 −m2
Zc
)(p′2 −m2

D∗)(q2 −m2
D)

×
(

−gµλ +
p′µp

′
λ

m2
D∗

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · . (30)

In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2

[

1

m2
c − q2

∫ 1

0
dα

α(2 + α)

m2
c − (1− α)p′2

−
1

m2
c − p′2

∫ 1

0
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]

. (31)

Isolating the p′µp
′
α structure in Eq. (30) and making a
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (27)

where

jD5 = id̄aγ5ca, and jD
∗

µ = c̄aγµua. (28)

Using the definitions

〈0|jD
∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
fDm2

D

mc
, (29)

the phenomenological side is given by

Π(phen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm2
D gZcDD∗(q2)

mc(p2 −m2
Zc
)(p′2 −m2

D∗)(q2 −m2
D)

×
(

−gµλ +
p′µp

′
λ

m2
D∗

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · . (30)

In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
−imc〈q̄gσ.Gq〉
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√
2π2

[
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Isolating the p′µp
′
α structure in Eq. (30) and making a
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for X(3872) (which is the same for Zc(3900)) shows good
OPE convergence and where the pole contribution is big-
ger than the continuum contribution [22]. In Fig. 3 we
show, through the circles, the right-hand side (RHS) of
Eq.(9), as a function of the Borel mass.
To determine the coupling constant gZcψπ we fit the

QCDSR results with the analytical expression in the
left-hand side (LHS) of Eq.(9), and find (using ∆s0 =
0.5 GeV): A = 1.46 × 10−4 GeV5 and B = −8.44 ×
10−4 GeV5. Using the definition of A in Eq.(10), the
value obtained for the coupling constant is gZcψπ =
3.89 GeV, which is in excellent agreement with the es-
timate made in [17], based on dimensional arguments.
Considering the uncertainties given above, we finally find:

gZcψπ = (3.89± 0.56) GeV. (12)

The decay width is given by [17]:

Γ(Z+
c (3900)→ J/ψπ+) =

p∗(mZc ,mψ,mπ)

8πm2
Zc

×
1

3
g2Zcψπ

(

3 +
(p∗(mZc ,mψ,mπ))2

m2
ψ

)

, (13)

where

p∗(a, b, c) =

√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
.

(14)

Therefore we obtain:

Γ(Z+
c (3900) → J/ψπ+) = (29.1± 8.2) MeV. (15)

III. Z+
c (3900) → ηc ρ

+ DECAY WIDTH

Next we consider the Z+
c (3900) → ηc ρ+ decay. The

three-point function for the corresponding vertex is ob-
tained from Eq. (2) by using

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j
†
α(0)]|0〉, (16)

with

jηc5 = ic̄aγ5ca, and jρµ = d̄aγµua. (17)

In this case the phenomenological side is

Π(phen)
µα (p, p′, q) =

−iλZcmρfρfηcm
2
ηc gZcηcρ(q

2)

2mc(p2 −m2
Zc
)(p′2 −m2

ηc)(q
2 −m2

ρ)

×
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−gµλ +
qµqλ
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ρ

)(

−gλα +
pαpλ

m2
Zc

)

+ · · · , (18)

where now we have used the definitions:

〈0|jρµ|ρ(q)〉 = mρfρεµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc
. (19)

In the OPE side we consider the CC diagrams of the same
kind of the diagram in Fig. 2. In the p′αqµ structure we
have:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√
2π2
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0
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1
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c − α(1− α)p′2

.

(20)
Remembering that p = p′+q, isolating the qαp′µ structure
in Eq. (18) and making a single Borel transformation on
both P 2 = P ′2 → M2, we finally get the sum rule:
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with Q2 = −q2 and

C =
gZcηcρ(Q

2)λZcmρfρfηcm
2
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2mcm2
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ηc)
. (22)

We use the experimental values for mρ, fρ and mηc [36]
and we extract fηc from ref. [37]:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (23)

One can use Eq. (21) and its derivative with respect
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (27)

where

jD5 = id̄aγ5ca, and jD
∗

µ = c̄aγµua. (28)

Using the definitions

〈0|jD
∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
fDm2

D

mc
, (29)

the phenomenological side is given by

Π(phen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm2
D gZcDD∗(q2)

mc(p2 −m2
Zc
)(p′2 −m2
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D)

×
(
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)(

−gλα +
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+ · · · . (30)

In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
µ structure we have:

Π(OPE) =
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FIG. 5. QCDSR results for gZcηcρ(Q
2), as a function of

Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24). The
cross gives the value of the coupling constant.

where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)

IV. Z+
c (3900) → D+D̄∗0 DECAY WIDTH

Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
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where
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In the OPE side we consider again only the CC dia-
grams. In the p′αp
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where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)
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parametrization of the QCDSR results through Eq. (24). The
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where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)
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Finally we consider the Z+
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where
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′),

〈0|jD5 |D(q)〉 =
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×
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In the OPE side we consider again only the CC dia-
grams. In the p′αp

′
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where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)
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Finally we consider the Z+
c (3900)→ D+D̄∗0 decay. In

this case we use in Eq. (2)

Πµα(x, y) = 〈0|T [jD
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where
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∗

µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),

〈0|jD5 |D(q)〉 =
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where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)
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where the form factor is independent of M2 is in the re-
gion 4.0 ≤ M2 ≤ 10.0 GeV2. The squares in Fig. 5 show
the Q2 dependence of gZcηcρ(Q

2), obtained for M2 = 5.0
GeV2. For other values of the Borel mass, in the range
4.0 ≤ M2 ≤ 10.0 GeV2, the results are equivalent. Since
the coupling constant is defined as the value of the form
factor at the meson pole: Q2 = −m2

ρ, we need to ex-
trapolate the form factor for a region of Q2 where the
QCDSR are not valid. This extrapolation can be done
by parametrizing the QCDSR results for gZcηcρ(Q

2) with
the help of an exponential form:

gZcηcρ(Q
2) = g1e

−g2Q
2

, (24)

with g1 = 4.83 GeV and g2 = 5.6×10−3 GeV−2. We also
show in Fig. 5, through the line, the fit of the QCDSR
results for ∆s0 = 0.5 GeV, using Eq. (24). The value of
the coupling constant, gZcηcρ, is also shown in this figure
through the cross. We obtain:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (25)

The uncertainty in the coupling constant given above
comes from variations in s0, λZc and mc in the ranges
given above. This value for the coupling is bigger than
the estimate presented in [17]. Inserting this coupling
and the corresponding masses into Eq. (13) we find

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (26)
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Πµα(x, y) = 〈0|T [jD
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where
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µ |D∗(p′)〉 = mD∗fD∗εµ(p
′),
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single Borel transformation on both P 2 = P ′2 → M2, we
get:
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2
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, (32)

with

E =
gZcDD∗(Q2)λZcfD∗fDm2

D

mcmD∗(m2
Zc

−m2
D∗)

. (33)

We use the experimental values for mD and mD∗ [36]
and we extract fD and fD∗ from ref. [26]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (34)

In Fig. 6 we show gZcDD∗(Q2), as a function of both
M2 and Q2, from where we notice that we get a Borel
stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.

FIG. 7. QCDSR results for gZcDD∗(Q2), as a function of
Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24).

Fixing M2 = 2.6 GeV2 we show in Fig. 7, through
the squares, the Q2 dependence of the gZcDD∗(Q2) form
factor. Again, to extract the coupling constant we fit the
QCDSR results using the exponential form in Eq. (24)
with g1 = 1.733 GeV and g2 = 0.076 GeV−2. The line
in in Fig. 7 shows the fit of the QCDSR results for

∆s0 = 0.5 GeV, using Eq. (24). We get for the coupling
constant:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (35)

The uncertainty in the coupling constant comes from
variations in s0, λZc , fD, fD∗ and mc. This value for
this coupling is again in excelent agreement with the es-
timate presented in [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSR
to evaluate the coupling constants in the vertices
Z+
c (3900)J/ψπ+, Z+

c (3900)ηcρ+ and Z+
c (3900)D+D̄∗0.

In the case of the Z+
c (3900)J/ψπ+ vertex, we have used

the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Z+
c (3900)ηcρ+ and Z+

c (3900)D+D̄∗0 vertices, we have
extracted the form factors, and the couplings were ob-
tained with a fit of the QCDSR results. In the three
cases we have only considered the color connected di-
agrams, since we expect the Zc(3900) to be a genuine
tetraquark state with a non-trivial color structure. The
obtained couplings, with the respective decay widths, are
given in Table I. We have also included in this table the
results for the vertex Z+

c (3900)D̄0D∗+, since it is exactly
the same result as in the Z+

c (3900)D+D̄∗0 vertex.

Table I: Coupling constants and decay widths in different
channels.

Vertex coupling constant (GeV) decay width (MeV)

Z+
c (3900)J/ψπ+ 3.89 ± 0.56 29.1 ± 8.2

Z+
c (3900)ηcρ+ 4.85 ± 0.81 27.5 ± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2 ± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2 ± 0.7

Considering these four decay channels we get a total
width Γ = (63.0 ± 18.1) GeV for Zc(3900) which is in
agreement with the two experimental values: Γ = (46 ±
22) MeV from BESIII [1], and Γ = (63 ± 35) MeV from
BELLE [2].
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We use the experimental values for mD and mD∗ [36]
and we extract fD and fD∗ from ref. [26]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (34)

In Fig. 6 we show gZcDD∗(Q2), as a function of both
M2 and Q2, from where we notice that we get a Borel
stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.

FIG. 7. QCDSR results for gZcDD∗(Q2), as a function of
Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24).

Fixing M2 = 2.6 GeV2 we show in Fig. 7, through
the squares, the Q2 dependence of the gZcDD∗(Q2) form
factor. Again, to extract the coupling constant we fit the
QCDSR results using the exponential form in Eq. (24)
with g1 = 1.733 GeV and g2 = 0.076 GeV−2. The line
in in Fig. 7 shows the fit of the QCDSR results for

∆s0 = 0.5 GeV, using Eq. (24). We get for the coupling
constant:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (35)

The uncertainty in the coupling constant comes from
variations in s0, λZc , fD, fD∗ and mc. This value for
this coupling is again in excelent agreement with the es-
timate presented in [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSR
to evaluate the coupling constants in the vertices
Z+
c (3900)J/ψπ+, Z+

c (3900)ηcρ+ and Z+
c (3900)D+D̄∗0.

In the case of the Z+
c (3900)J/ψπ+ vertex, we have used

the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Z+
c (3900)ηcρ+ and Z+

c (3900)D+D̄∗0 vertices, we have
extracted the form factors, and the couplings were ob-
tained with a fit of the QCDSR results. In the three
cases we have only considered the color connected di-
agrams, since we expect the Zc(3900) to be a genuine
tetraquark state with a non-trivial color structure. The
obtained couplings, with the respective decay widths, are
given in Table I. We have also included in this table the
results for the vertex Z+

c (3900)D̄0D∗+, since it is exactly
the same result as in the Z+

c (3900)D+D̄∗0 vertex.

Table I: Coupling constants and decay widths in different
channels.

Vertex coupling constant (GeV) decay width (MeV)

Z+
c (3900)J/ψπ+ 3.89 ± 0.56 29.1 ± 8.2

Z+
c (3900)ηcρ+ 4.85 ± 0.81 27.5 ± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2 ± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2 ± 0.7

Considering these four decay channels we get a total
width Γ = (63.0 ± 18.1) GeV for Zc(3900) which is in
agreement with the two experimental values: Γ = (46 ±
22) MeV from BESIII [1], and Γ = (63 ± 35) MeV from
BELLE [2].
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We use the experimental values for mD and mD∗ [36]
and we extract fD and fD∗ from ref. [26]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (34)

In Fig. 6 we show gZcDD∗(Q2), as a function of both
M2 and Q2, from where we notice that we get a Borel
stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.

FIG. 7. QCDSR results for gZcDD∗(Q2), as a function of
Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24).

Fixing M2 = 2.6 GeV2 we show in Fig. 7, through
the squares, the Q2 dependence of the gZcDD∗(Q2) form
factor. Again, to extract the coupling constant we fit the
QCDSR results using the exponential form in Eq. (24)
with g1 = 1.733 GeV and g2 = 0.076 GeV−2. The line
in in Fig. 7 shows the fit of the QCDSR results for

∆s0 = 0.5 GeV, using Eq. (24). We get for the coupling
constant:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (35)

The uncertainty in the coupling constant comes from
variations in s0, λZc , fD, fD∗ and mc. This value for
this coupling is again in excelent agreement with the es-
timate presented in [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSR
to evaluate the coupling constants in the vertices
Z+
c (3900)J/ψπ+, Z+

c (3900)ηcρ+ and Z+
c (3900)D+D̄∗0.

In the case of the Z+
c (3900)J/ψπ+ vertex, we have used

the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Z+
c (3900)ηcρ+ and Z+

c (3900)D+D̄∗0 vertices, we have
extracted the form factors, and the couplings were ob-
tained with a fit of the QCDSR results. In the three
cases we have only considered the color connected di-
agrams, since we expect the Zc(3900) to be a genuine
tetraquark state with a non-trivial color structure. The
obtained couplings, with the respective decay widths, are
given in Table I. We have also included in this table the
results for the vertex Z+

c (3900)D̄0D∗+, since it is exactly
the same result as in the Z+

c (3900)D+D̄∗0 vertex.

Table I: Coupling constants and decay widths in different
channels.

Vertex coupling constant (GeV) decay width (MeV)

Z+
c (3900)J/ψπ+ 3.89 ± 0.56 29.1 ± 8.2

Z+
c (3900)ηcρ+ 4.85 ± 0.81 27.5 ± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2 ± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2 ± 0.7

Considering these four decay channels we get a total
width Γ = (63.0 ± 18.1) GeV for Zc(3900) which is in
agreement with the two experimental values: Γ = (46 ±
22) MeV from BESIII [1], and Γ = (63 ± 35) MeV from
BELLE [2].
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Conclusions

Zc+(3900) ➜  JP =1+ tetraquark state                
            ➜  charged partner of the X(3872)
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• Lots of charmonia in the last 10 years, new 
bottomonia start to appear: a new spectroscopy?

• Emerging consensus that X(3872) is a mixed 
charmonium-molecular state.

• Discovery of Y(4260), Y(4360) and Y(4660) 
represent an overpopulation of the 1-- 
charmonium states. 

• Absence of open charm production in the Y 
decay is inconsistent with       interpretation

• Z+ states, need confirmation, but only molecule 
or tetraquark interpretations are possible  

Conclusions II
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