

Phenomenology of hadrons in the eLSM

Francesco Giacosa

in collaboration with

Susanna Gallas, Anja Habersetzer, Walaa Eshraim, Denis Parganlija, Stefan Strüber, Stanislaus Janowski, Achim Heinz, Khaled Teilab, Elina Seel, Mara Grahl, Thomas Wolkanowski, Florian Divotgey, Lisa Olbrich, Antje Peters, Klaus Neuschwander, and Dirk H. Rischke *J. W. Goethe University, Frankfurt am Main*

Gyuri Wolf, Peter Kovacs, Inst. for Particle and Nuclear Physics, Wigner Research Center for Physics, Budapest (Hungary)

Giuseppe Pagliara, University and INFN of Ferrara (Italy)

RANP 2013-Takeshi Kodama's Fest-Rio-25/9/2013

Development of the eLSM: general considerations

Meson sector

Baryon sector

Nonzero density

Development of the eLSM: general considerations

• Development of a chirally symmetric model for mesons and baryons including (axial-)vector d.o.f.

'Extended Linear Sigma Model (eLSM)'

• Study of the model for $T = \mu = 0$ (spectroscopy in vacuum)

(Masses, decay, scattering lengths,...)

Interrelation between these two aspects!

- Second goal: properties at nonzero T and μ

(condensates and masses in thermal/matter medium,...)

Fields of the model

• Quark-antiquark mesons: scalar, pseudoscalar, vector and axialvector quarkonia.

- Additional mesons: The scalar and the pseudoscalar glueballs
- Baryons: nucleon doublet and its partner

(in the so-called mirror assignment)

Criteria for the construction of the model

We construct the Lagrangian of the so-called Extended Linear Sigma Model (ELSM) according to:

chiral invariance

and

dilatation symmetry.

The breaking of the dilatation symmetry is only included in the "gluonic part"...(scalar glueball and axial anomaly)

Moreover, invariance under C and P is also taken into account.

These are basic properties of QCD: $\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^{\mu} D_{\mu} - m_i) q_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$

Development of the eLSM (Nf = 3): mesons

(Pseudo)scalar sector

9 pseudoscalar fields: $L = S = 0 \implies J^{PC} = 0^{-+}$

$$P = P_a \lambda^a = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_N}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_N}{\sqrt{2}} & K^0 \\ K^- & \overline{K}^0 & \eta_S \end{pmatrix} \equiv \begin{pmatrix} \overline{u}\Gamma u & \overline{d}\Gamma u & \overline{s}\Gamma u \\ \overline{u}\Gamma d & \overline{d}\Gamma d & \overline{s}\Gamma d \\ \overline{u}\Gamma s & \overline{d}\Gamma s & \overline{s}\Gamma s \end{pmatrix} \qquad \Gamma = i\gamma^5$$

$$\pi^{+} \equiv u\overline{d} \qquad \qquad \begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \theta_{\eta} & \sin \theta_{\eta} \\ -\sin \theta_{\eta} & \cos \theta_{\eta} \end{pmatrix} \begin{pmatrix} \eta_{N} \equiv \sqrt{1/2}(\overline{u}u + \overline{d}d) \\ \eta_{S} \equiv \overline{s}S \end{pmatrix} \\ -36^{\circ} < \theta_{\eta} < -45^{\circ}$$

...and 9 scalar fields:
$$L = S = 1 \implies J^{PC} = 0^{++}$$

$$S = S_a \lambda^a = \begin{pmatrix} \frac{a_0}{\sqrt{2}} + \frac{\sigma_N}{\sqrt{2}} & a_0^+ & K_s^+ \\ a_0^- & -\frac{a_0}{\sqrt{2}} + \frac{\sigma_N}{\sqrt{2}} & K_s^0 \\ K_s^- & \overline{K}_s^0 & \sigma_s \end{pmatrix} = \begin{pmatrix} \overline{u} \Gamma u & \overline{d} \Gamma u & \overline{s} \Gamma u \\ \overline{u} \Gamma d & \overline{d} \Gamma d & \overline{s} \Gamma d \\ \overline{u} \Gamma s & \overline{d} \Gamma s & \overline{s} \Gamma s \end{pmatrix} \quad \Gamma = 1$$

$$a_0^+ = a_0 (1450) \equiv u \overline{d} \quad \text{and not } a_0 (980) !!! \qquad \sigma_N \equiv \sqrt{1/2} (u \overline{u} + d \overline{d}) \approx f_0 (1370)$$
and not $f_0 (500) !!! \qquad \sigma_s \equiv u \overline{s} \approx f_0 (1500) \text{ or } f_0 (1710)$
and not $f_0 (980) !!!$

$$\Phi = S + iP$$
$$\Phi \rightarrow U_L \Phi U_R^+$$

(Axial-)Vector sector

9 vector fields... $L = 0, S = 1 \rightarrow J^{PC} = 1^{--}$

$$V^{\mu} = V^{\mu}_{\ a} \lambda^{a} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{N}}{\sqrt{2}} & \rho^{+} & K_{*}(892)^{+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{N}}{\sqrt{2}} & K_{*}(892)^{0} \\ K_{*}(892)^{-} & \overline{K}_{*}(892)^{0} & \phi_{S} \end{pmatrix} = \begin{pmatrix} \overline{u}\Gamma u & \overline{d}\Gamma u & \overline{s}\Gamma u \\ \overline{u}\Gamma d & \overline{d}\Gamma d & \overline{s}\Gamma d \\ \overline{u}\Gamma s & \overline{d}\Gamma s & \overline{s}\Gamma s \end{pmatrix} \quad \Gamma = \gamma^{\mu}$$

$$\rho^{+} \equiv u\overline{d},...$$

$$K_{*}^{+}(892) \equiv u\overline{s}$$

$$\omega \approx \omega_{N} \equiv \sqrt{1/2}(\overline{u}u + \overline{d}d)$$

$$\phi \approx \phi_{S} \equiv \overline{s}s$$

...and 9 axial-vector fields... $L = S = 1 \rightarrow J^{PC} = 1^{++}$

$$A^{\mu} = A^{\mu}_{\ a} \lambda^{a} = \begin{pmatrix} \frac{a_{1}^{\ 0}}{\sqrt{2}} + \frac{f_{1,N}}{\sqrt{2}} & a_{1}^{\ +} & K_{1}^{\ +} \\ a_{1}^{\ -} & -\frac{a_{1}^{\ 0}}{\sqrt{2}} + \frac{\omega_{N}}{\sqrt{2}} & K_{1}^{\ 0} \\ K_{1}^{\ -} & \overline{K}_{1}^{\ 0} & f_{1,S} \end{pmatrix} \equiv \begin{pmatrix} \overline{u} \Gamma u & \overline{d} \Gamma u & \overline{s} \Gamma u \\ \overline{u} \Gamma d & \overline{d} \Gamma d & \overline{s} \Gamma d \\ \overline{u} \Gamma s & \overline{d} \Gamma s & \overline{s} \Gamma s \end{pmatrix} \qquad \Gamma = \gamma^{\mu} \gamma^{5}$$

 $a_{1}^{+} = a_{1}^{+}(1260) \equiv u\overline{d}$ $K_{1}^{+} = K_{1}^{+}(1270) \equiv u\overline{s}$ $f_{1}(1285) \approx f_{1,N} \equiv \sqrt{1/2}(\overline{u}u + \overline{d}d)$ $f_{1}(1510) \approx f_{1,S} \equiv \overline{s}s$

$$L^{\mu} = V^{\mu} + A^{\mu} \qquad \qquad R^{\mu} \rightarrow U_{R} R^{\mu} U_{R}^{+}$$
$$R^{\mu} = V^{\mu} - A^{\mu} \qquad \qquad L^{\mu} \rightarrow U_{L} L^{\mu} U_{L}^{+}$$

Meson sector: how many fields do we have?

Morningstar (1999)

- G : Scalar glueball (trace anomaly)
- \widetilde{G} : Pseudoscalar glueball (axial anomaly)

For Nf = 3 there are 38 mesons 36 quark-antiquark fields + 2 glueballs

Model of QCD - eLSM

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} G)^{2} - \frac{1}{4} \frac{m_{G}^{2}}{\Lambda^{2}} \left(G^{4} \ln \left| \frac{G}{\Lambda} \right| - \frac{G^{4}}{4} \right) + \operatorname{Tr} \left[(D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) \right]$$

$$- m_{0}^{2} \left(\frac{G}{G_{0}} \right)^{2} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] - \lambda_{1} (\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right])^{2} - \lambda_{2} \operatorname{Tr} \left[(\Phi^{\dagger} \Phi)^{2} \right]$$

$$+ \left(\frac{G}{G_{0}} \right)^{2} \operatorname{Tr} \left[\left(\frac{m_{1}^{2}}{2} + \Delta \right) \left((L^{\mu})^{2} + (R^{\mu})^{2} \right) \right]$$

$$- \frac{1}{4} \operatorname{Tr} \left[(L^{\mu\nu})^{2} + (R^{\mu\nu})^{2} \right] + \operatorname{Tr} \left[H \left(\Phi^{\dagger} + \Phi \right) \right]$$

$$+ c_{1} [\det(\Phi) - \det(\Phi^{\dagger})]^{2} + \frac{h_{1}}{2} \operatorname{Tr} [\Phi^{\dagger} \Phi] \operatorname{Tr} [L_{\mu} L^{\mu} + R_{\mu} R^{\mu}]$$

$$+ h_{2} \operatorname{Tr} [\Phi^{\dagger} L_{\mu} L^{\mu} \Phi + \Phi R_{\mu} R^{\mu} \Phi^{\dagger}] + 2h_{3} \operatorname{Tr} [\Phi R_{\mu} \Phi^{\dagger} L^{\mu}] + \dots$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{(\sigma_N + a_0^0) + i(\eta_N + \pi^0)}{\sqrt{2}} & a_0^+ + i\pi^+ & K_0^{\star +} + iK^+ \\ a_0^- + i\pi^- & \frac{(\sigma_N - a_0^0) + i(\eta_N - \pi^0)}{\sqrt{2}} & K_0^{\star 0} + iK^0 \\ K_0^{\star -} + iK^- & \bar{K}_0^{\star 0} + i\bar{K}^0 & \sigma_S + i\eta_S \end{pmatrix} \qquad L^{\mu}, R^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_N \pm \rho^0}{\sqrt{2}} \pm \frac{f_{1N} \pm a_1^0}{\sqrt{2}} & \rho^+ \pm a_1^+ & K^{\star +} \pm K_1^+ \\ \rho^- \pm a_1^- & \frac{\omega_N \mp \rho^0}{\sqrt{2}} \pm \frac{f_{1N} \mp a_1^0}{\sqrt{2}} & K^{\star 0} \pm K_1^0 \\ K^{\star -} \pm K_1^- & \bar{K}^{\star 0} \pm i\bar{K}_1^0 & \omega_S \pm f_{1S} \end{pmatrix}$$

S. Janowski, D. Parganlija, F. Giacosa, D. H. Rischke, **Phys. Rev. D84, 054007 (2011) arXiv: 1103.3238** D. Parganlija, P. Kovacs, G. Wolf , F. Giacosa, D. H. Rischke, **Phys.Rev. D87 (2013) 014011** arXiv:1208.0585

Basic feature

$$V = \frac{m_0^2}{2} (\sigma^2 + \pi^2) + \frac{\lambda_1 + \lambda_2}{4} (\sigma^2 + \pi^2)^2$$

 $m_0^2 < 0 \rightarrow \text{Mexican hat}$ $\pi = \text{neutral pion}$ Spontaneous Symmetry Breaking (SSB): $\sigma = \sigma_N \equiv \sqrt{1/2(uu + dd)} \equiv f_0(1370)$...and not to $f_0(500)$...

Because of dilatation invariance: only a finite number of terms is present!

We calculate: masses, decays, and scattering lengths.

Results of the fit (11 parameters, 21 exp. quantities)

Error from PDG or 5% of exp. Scalar-isoscalar sector not included.

$$\chi^{2}_{red} = 1.2$$

Observable	Fit [MeV]	Experiment [MeV]
f_{π}	96.3 ± 0.7	92.2 ± 4.6
f_K	106.9 ± 0.6	110.4 ± 5.5
m_{π}	141.0 ± 5.8	137.3 ± 6.9
m_K	485.6 ± 3.0	495.6 ± 24.8
m_{η}	509.4 ± 3.0	547.9 ± 27.4
$m_{\eta'}$	962.5 ± 5.6	957.8 ± 47.9
$m_{ ho}$	783.1 ± 7.0	775.5 ± 38.8
$m_{K^{\star}}$	885.1 ± 6.3	893.8 ± 44.7
$m_{oldsymbol{\phi}}$	975.1 ± 6.4	1019.5 ± 51.0
m_{a_1}	1186 ± 6	1230 ± 62
$m_{f_1(1420)}$	1372.5 ± 5.3	1426.4 ± 71.3
m_{a_0}	1363 ± 1	1474 ± 74
$m_{K_0^\star}$	1450 ± 1	1425 ± 71
$\Gamma_{\rho \to \pi \pi}$	160.9 ± 4.4	149.1 ± 7.4
$\Gamma_{K^{\star} \to K\pi}$	44.6 ± 1.9	46.2 ± 2.3
$\Gamma_{\phi \to \bar{K}K}$	3.34 ± 0.14	3.54 ± 0.18
$\Gamma_{a_1 \to \rho \pi}$	549 ± 43	425 ± 175
$\Gamma_{a_1 \to \pi \gamma}$	0.66 ± 0.01	0.64 ± 0.25
$\Gamma_{f_1(1420)\to K^\star K}$	44.6 ± 39.9	43.9 ± 2.2
Γ_{a_0}	266 ± 12	265 ± 13
$\Gamma_{K_0^{\star} \to K\pi}$	285 ± 12	270 ± 80

arXiv:1208.0585

arXiv:1208.0585

Overall phenomenology is good.

Scalar mesons $a_0(1450)$ and $K_0(1430)$ above 1 GeV and are quark-antiquark states.

Importance of the (axial-)vector mesons

There are many consequences of the fit. Example: a₀(1450)

Theory

$$\frac{\Gamma_{a_0 \to \eta' \pi}}{\Gamma_{a_0 \to \eta \pi}} = 0.19 \pm 0.02 , \quad \frac{\Gamma_{a_0 \to KK}}{\Gamma_{a_0 \to \eta \pi}} = 1.12 \pm 0.07$$

Exp (PDG)

$$\frac{\Gamma_{a_0(1450)\to\eta'\pi}}{\Gamma_{a_0(1450)\to\eta\pi}} = 0.35 \pm 0.16 , \quad \frac{\Gamma_{a_0(1450)\to KK}}{\Gamma_{a_0(1450)\to\eta\pi}} = 0.88 \pm 0.23 .$$

An important ongoing work: where is the scalar glueball?

The calculation of the full mixing problem in the I=J=0 sector is ongoing:

$$\begin{pmatrix} f_0(1370) \\ f_0(1500) \\ f_0(1710) \end{pmatrix} = B \begin{pmatrix} \overline{\sigma}_N \equiv nn = \sqrt{\frac{1}{2}}(\overline{u}u + \overline{d}d) \\ G \equiv gg \\ \overline{\sigma}_S \equiv ss \end{pmatrix}$$

where B is a 3×3 orthogonal matrix

A new entry: the pseudoscalar glueball

$$\mathcal{L}_{\tilde{G}\text{-mesons}}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right) \qquad \mathbf{M}_{\tilde{G}} \approx 2.6 \,\mathrm{GeV}$$

Quantity	Value	
$\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}}^{tot}$	0.049	
$\Gamma_{\tilde{G} \to K K \eta'} / \Gamma_{\tilde{G}}^{tot}$	0.019	
$\Gamma_{ ilde{G} ightarrow\eta\eta\eta}/\Gamma_{ ilde{G}}^{tot}$	0.016	
$\Gamma_{ ilde{G} ightarrow \eta \eta \eta'} / \Gamma_{ ilde{G}}^{tot}$	0.0017	
$\Gamma_{\tilde{G} o \eta \eta' \eta'} / \Gamma_{\tilde{G}}^{tot}$	0.00013	
$\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}}^{tot}$	0.46	
$\Gamma_{ ilde{G} ightarrow\eta\pi\pi}/\Gamma_{ ilde{G}}^{tot}$	0.16	
$\Gamma_{ ilde{G} o \eta' \pi \pi} / \Gamma_{ ilde{G}}^{tot}$	0.094	

$$\Gamma_{\widetilde{G}\to\pi\pi\pi}=0$$

Details in:

- W. Eshraim, S. Janowski, F.G., D. Rischke, Phys.Rev. D87 (2013) 054036. arxiv: 1208.6474 .
- W. Eschraim, S. Janowski, K. Neuschwander, A. Peters, F.G., Acta Phys. Pol. B, Prc. Suppl. 5/4, arxiv: 1209.3976

Value

0.059

0.083

0.028

0.012

0.019

Francesco Giacosa

Quantity

 $\rightarrow a_0 \pi$

 $\tilde{G} \rightarrow \eta \sigma_N$

 $\Gamma_{\tilde{G} \to \eta \sigma_S}$

 $\bar{\Gamma}_{\underline{\tilde{G}} \to \eta'}$

tot

to

tot

rtot

 $\neg tot$

 $\Gamma_{\tilde{G} \to KKS}$

 \tilde{G} -

The weak tau-decay into mesons

Thanks to Anja Habersetzer

Development of a hadronic model (Nf =2): baryons

Baryon sector in the EISM (Nf = 2 only)

Nucleon and its chiral partner; chiral symmetry and dilatation invariance

(Axial-)vector mesons are included

Mirror assignment: C. De Tar and T. Kunihiro, PRD 39 (1989) 2805)

$$\begin{split} \Psi_{1,R} &\to U_R \Psi_{1,R} & \Psi_{1,L} \to U_L \Psi_{1,L} \\ \Psi_{2,R} &\to U_L \Psi_{2,R} & \Psi_{2,L} \to U_R \Psi_{2,L} \end{split}$$

A chirally invariant mass-term is possible!

$$m_{0}\left(\overline{\Psi}_{1,L}\Psi_{2,R}-\overline{\Psi}_{1,R}\Psi_{2,L}-\overline{\Psi}_{2,L}\Psi_{1,R}+\overline{\Psi}_{2,R}\Psi_{1,L}\right)$$

Lagrangian in the baryon sector

Interaction of baryons with (pseudo)scalar and (axial-)vector mesons

 $\mathcal{L}_{mirror} = \overline{\Psi}_{1L} i \gamma_{\mu} D_{1L}^{\mu} \Psi_{1L} + \overline{\Psi}_{1R} i \gamma_{\mu} D_{1R}^{\mu} \Psi_{1R} + \overline{\Psi}_{2L} i \gamma_{\mu} D_{2R}^{\mu} \Psi_{2L} + \overline{\Psi}_{2R} i \gamma_{\mu} D_{2L}^{\mu} \Psi_{2R}$ $- \widehat{g}_1 \left(\overline{\Psi}_{1L} \Phi \Psi_{1R} + \overline{\Psi}_{1R} \Phi^{\dagger} \Psi_{1L} \right) - \widehat{g}_2 \left(\overline{\Psi}_{2L} \Phi^{\dagger} \Psi_{2R} + \overline{\Psi}_{2R} \Phi \Psi_{2L} \right) + \mathcal{L}_{mass}$

$$\mathcal{L}_{mass}^{\mu} = \partial^{\mu} - ic_{1}R^{\mu}, D_{1L}^{\mu} = \partial^{\mu} - ic_{1}L^{\mu}$$
$$\mathcal{L}_{mass} = -m_{0}(\overline{\Psi}_{1L}\Psi_{2R} - \overline{\Psi}_{1R}\Psi_{2L} - \overline{\Psi}_{2L}\Psi_{1R} + \overline{\Psi}_{2R}\Psi_{1L})$$

$$\begin{pmatrix} N \\ N^* \end{pmatrix} = \frac{1}{\sqrt{2\cosh\delta}} \begin{pmatrix} e^{\delta/2} & \gamma_5 e^{-\delta/2} \\ \gamma_5 e^{-\delta/2} & -e^{\delta/2} \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \quad \delta = \operatorname{arcosh}\left[\frac{M_{_N} + M_{_{N^*}}}{2m_{_0}}\right]$$

N = N(940) $N^* = N^*(1535)$

Mass of the nucleon

$$m_{N,N^*} = \sqrt{m_0^2 + \left(\frac{\widehat{g}_1 + \widehat{g}_2}{4}\right)^2 \phi^2 \pm \frac{(\widehat{g}_1 - \widehat{g}_2)\phi}{4}} \qquad N = N(940)$$

$$N^* = N^*(1535)$$

If $m_0 = 0 \rightarrow$ only the quark condensate generates the masses. $m_N \sim \phi$

$$m_0 = 460 \pm 136 \text{ MeV}$$

Using $g_A^N = 1.26$ (exp), $g_A^{N^*} \approx 0.2$ (latt) and $\Gamma_{N^* \to N\pi} \approx 67$ MeV

Details in S. Gallas, F. G., D. H. Rischke, Phys.Rev. D82 (2010) 014004, arXiv:0907.5084

 m_0 parameterizes the contribution which does not stem from the quark condensate Crucial also at nonzero temperature and density also in the so-called quarkyonic phase: L. McLerran, R. Pisarski Nucl.Phys.A796:83-100,2007

Test: pion-nucleon scattering lengths

 $a_0^- = (6.04 \pm 0.63) \cdot 10^{-4} \text{ MeV}^{-1}$ $a_0^{-(\exp)} = (6.4 \pm 0.1) \cdot 10^{-4} \text{ MeV}^{-1}$

 $a_0^+ \approx (\text{from} - 20 \text{ to} + 20 \cdot 10^{-4}) \text{ MeV}^{-1}$ $a_0^{+(\exp)} = (-8.8 \pm 7.2) \cdot 10^{-4} \text{ MeV}^{-1}$

Large theoretical uncertainty due to the scalar-isosocalar sector

Importance of both vector mesons and mirror assignment in order to get these results

What we are studying rigth now...

$$p + p \rightarrow p + p + X$$

 $X = \omega, \eta$, lepton pair,...

Many diagrams to calculate; the advantage is : chiral symmetry (and also g.i.) built in.

Thanks to Dr. Khaled Teilab.

Results at nonzero density

The σ -field of our model corresponds to the resonance f₀(1370) ...and not to the lightest scalar resonance f₀(500).

The question is: what is $f_0(500)$ and, more in general, what are the scalar states below 1 GeV?

A good phenomenology (masses and decays) is achieved when interpreting the light scalar states as tetraquarks: $f_0(500) \approx [\overline{u}, \overline{d}][u, d]$ (bound states of a diquark and an anti-diquark)

Details in: F.G, Phys.Rev. D 75 (2007) 054007

Back to nucleons: where does mo comes from?

$$m_0\left(\overline{\Psi}_{1,L}\Psi_{2,R}-\overline{\Psi}_{1,R}\Psi_{2,L}-\overline{\Psi}_{2,L}\Psi_{1,R}+\overline{\Psi}_{2,R}\Psi_{1,L}\right)$$

By requiring dilatation invariance one should modify the mass-term as:

$$a\chi\left(\overline{\Psi}_{1,L}\Psi_{2,R}-\overline{\Psi}_{1,R}\Psi_{2,L}-\overline{\Psi}_{2,L}\overline{\Psi}_{1,R}+\overline{\Psi}_{2,R}\Psi_{1,L}\right)$$
Tetraquark
New field: fo(500)

By shifting :
$$\chi \to \chi_0 + \chi$$
 one has : $m_0 = a \chi_0$

mo originates form the tetraquark condensate

Note, also, a tetraquark exchange naturally arises in nucleon-nucleon interactions

Nuclear matter saturation and compressibility

Nuclear matter: why does it bind?

The resonance $f_0(500)$, here interpreted as a tetraquark, plays an important role for the stability of nuclear matter.

Related 'amusing' question: does nuclear matter binds at large Nc?

As soon as the lightest scalar $f_0(500)$ is not a quarkonium, nuclear matter ceases to exist already for Nc=4.

Details in: L. Bonanno and F.G., Nucl.Phys.A859:49-62,2011 arXiv:1102.3367 [hep-ph]

Inhomogeneous condensation at nonzero density

Up to now : $\phi = const$

...but one can have a Chiral Density Wave:

 $\phi(z) = \phi \cos(2fz)$

 $\langle \pi^0 \rangle = \phi \sin(2fz)/Z$

Francesco Giacosa

Inhomogeneous condensation/2

$$\phi(z) = \langle \sigma \rangle = \phi \cos(2 fz)$$
$$\langle \pi^0 \rangle = \phi \sin(2 fz) / Z$$

 $m_0 = 460 \, {\rm MeV}$

Summary

Hadronic Theory (eLSM) based on chiral symmetry and dilatation invariance

Important role of (axial-)vector mesons in all phenomenology

Scalar quarkonia and glueball above 1 GeV (effects in the medium)

Nucleon mass contribution which does not stem from the chiral condensate (but from the tetraquark and glueball condensates)

Ongoing works: Nf =4, additional tetraquark states, weak decays, proton-proton scattering, unitarization (loops)...

Planned: nonzero temperature

Thank You

Tetraquark: outlook and short excursus at nonzero T

A possibility is to interpret the light scalar states below 1 GeV [f0(600), k(800), f0(980) and a0(980)] as diquark-antidiquark objects: these are the Jaffe's tetraquarks.

The Nf=3 case is an outlook. Mixing of these tetraquark-quarkonioa takes place.

Black et al, **Phys. Rev. D 64** (2001), F.G., **Phys.Rev.D 75**,(2007)

For Nf=2 only one tetraquark survives. In this case we studied a simplified system at nonzero T. The resonance $f_0(1370) \approx \sigma \equiv \sqrt{\frac{1}{2}(uu + dd)}$ is the chiral partner of the pion $\vec{\pi}$.

The resonance $f_0(1370) \approx \sigma \equiv \sqrt{\frac{1}{2}(\bar{u}u + \bar{d}d)}$ is the chiral partner of the pion $\vec{\pi}$. The resonance $f_0(600) \approx \chi \equiv \frac{1}{2}[u,d][\bar{u},\bar{d}]$ is an extra - scalar state

Increasing of mixing:

- 1) Tc decreases
- 2) First order softened
- 3) Cross-over obtained for g large enough

Achim Heinz, Stefan Strube, F.G., Dirk H. Rischke FPinys:Revi 1079:037502,2009; arXiv:0805.1134 [hep-ph]

Digression: 3 scenarios for the $\rho\text{-meson}$ at nonzero T

QCD and its symmetries $\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^{\mu} D_{\mu} - m_i) q_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$

SU(3)color: exact. Confinement: you never see color, but only white states.

Dilatation invariance:holds only at a classical level and in the chiral limit.Broken by quantum fluctuations (trace anomaly)and by small quark masses

- **SU(3)**_R**xSU(3)**_L: holds in the chiral limit, but is broken by nonzero quark masses. Moreover, it is spontaneously broken to U(3)V=R+L
- U(1)A=R-L: holds at a classical level, but is also broken by quantum fluctuations (chiral anomaly)
- **C and P**: charge conjugation and parity: exact.

Dilaton / Scalar glueball

At the hadronic level, we describe these properties as:

$$G^{4} \sim G^{a}_{\mu\nu}G^{a,\mu\nu}$$
$$\mathcal{L}_{dil} = \frac{1}{2} (\partial_{\mu}G)^{2} - V_{dil}(G)$$
$$V_{dil}(G) = \frac{1}{4} \frac{m_{G}^{2}}{\Lambda_{G}^{2}} \left[G^{4} \ln \left(\frac{G}{\Lambda_{G}} \right) - \frac{G^{4}}{4} \right]$$

Ag dimensionful param that breaks dilatation inv!

$$\partial_{\mu}J^{\mu} = T^{\mu}_{\mu} = -\frac{1}{4}\frac{m_G^2}{\Lambda_G^2}G^4$$

In QCD it is: $\partial_{\mu}J^{\mu} = T^{\mu}_{\mu} = \frac{\beta(g)}{4g}G^{a}_{\mu\nu}G^{a,\mu\nu} \neq 0$