

Extracting the bulk viscosity

of the quark-gluon plasma

Gabriel S. Denicol

with:

J.B. Rose, J.F. Paquet, I. Kozlov, M. Luzum, S. Jeon, C. Gale

Dedicated to T. Kodama on the occasion of his 70th birthday. KANP 2013 Takeshi Kodama's Fest 23-27 September 2013 Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil

Heavy Ion Collisions in a Nutshell (fluid dynamical modeling)

Basics of fluid dynamics

Energy-momentum conservation

Charge conservation

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \qquad \partial_{\mu}N^{\mu} = 0$$

$$N^{\mu} = nu^{\mu} + n^{\mu},$$

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} / - \Delta^{\mu\nu} (P_0 + \Pi) + \pi^{\mu\nu}$$

Particle
diffusion
current
Bulk viscous
pressure
tensor

Always true, but not enough

Spatial projector $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$ $u_{\mu}u^{\mu} = 1$

What most people solve

- ➡ Most simulations neglect nonlinear terms
- ➡ Most simulations neglect bulk viscous pressure
- ➡ All simulations neglect heat flow

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$$

Majority of conclusions of our field are based on these equations (e.g., MUSIC 1.0, Ohio Group)

Is there any point in improving this?

Viscous Effects

Bulk

Resistance to expansion

Resistance to deformation

We ignore this one Bulk

We like this one Shear

Resistance to expansion

Resistance to deformation

because it's small? some estimates ...

Bulk viscosity

Shear viscosity

Karsh&Kharzeev&Tuchin Noronha&Noronha&Greiner

Hirano&Gyulassy

But in the region of interest, we don't really know ...7

My old calculation (with Kodama)

Temperature profile (Glauber IC, $\tau_0 = 0.6$ fm)

Ideal - 2.1 fm **Viscous -** 2.1 fm

Also: Extreme time and spatial scales

→very small system

→very large gradients

→very large expansion rate

 From the fluid-dynamical point of view, challenging to describe

~10 fm

→It is possible that higher-order terms also matter

For a dilute gas

In terms of Knudsen number Kn =

 $\ell_{\rm micro}$

In a heavy ion collision ... $\operatorname{Kn} \sim \tau_{\pi} \nabla_{\mu} u^{\mu} \sim \frac{\eta}{s} \frac{1}{T\tau} \sim 0.2 - 1$

Higher order terms can be important ...

10

In this talk

→are there effects from nonlinear terms ?

→are there effects form bulk viscosity? How they differ from shear

→Difficulties in ultracentral collisions ...

Transport equations

Inclusion of bulk viscous pressure, shear-stress tensor, and all couplings

theory part discussed by Rischke

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} = -\beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \varphi_{1} \Pi^{2} + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_{3} \pi^{\mu\nu} \pi_{\mu\nu} ,\\ \dot{\pi}^{\langle \mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi} \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} + \varphi_{6} \Pi \pi^{\mu\nu} .\end{split}$$

Transport coefficients computed within the 14-moment approximation

Transport equations

Inclusion of bulk viscous pressure, shear-stress tensor, and all couplings

theory part discussed by Rischke

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} \;=\; -\beta_{\Pi}\theta - \delta_{\Pi\Pi}\Pi\theta + \varphi_{1}\Pi^{2} + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu} + \varphi_{3}\pi^{\mu\nu}\pi_{\mu\nu} \;, \\ \dot{\pi}^{\langle\mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} \;=\; 2\beta_{\pi}\sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle\mu}\omega^{\nu\rangle\alpha} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \varphi_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha} - \tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} + \varphi_{6}\Pi\pi^{\mu\nu} . \end{split}$$

Second-Order Nonlinear source terms

Bulk viscous pressure

Coupling between bulk viscous pressure and shear-stress tensor

Coefficients employed

$$\begin{split} \dot{\Pi} &+ \frac{\Pi}{\tau_{\Pi}} \;=\; -\beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \varphi_{1} \Pi^{2} + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_{3} \pi^{\mu\nu} \pi_{\mu\nu} \;, \\ \dot{\pi}^{\langle \mu\nu\rangle} &+ \frac{\pi^{\mu\nu}}{\tau_{\pi}} \;=\; \frac{i}{4} \beta_{\pi} \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \tau_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha} \\ &+ \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu} + \varphi_{6} \Pi \pi^{\mu\nu} . \end{split}$$

Transport coefficients computed within the 14-moment approximation

$$\beta_{\pi} = \frac{\varepsilon_{0} + P_{0}}{5}, \ \delta_{\pi\pi} = \frac{4}{3}\tau_{\pi} , \ \tau_{\pi\pi} = \frac{10}{7}\tau_{\pi} , \ \varphi_{7} = \frac{9}{70P_{0}}\tau_{\pi} ,$$
$$\beta_{\Pi} = \frac{\zeta}{\tau_{\Pi}} = 14.55 \times \left(\frac{1}{3} - c_{s}^{2}\right)^{2} (\varepsilon_{0} + P_{0}) + \mathcal{O}\left(z^{5}\right),$$
$$\frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} = 1 - c_{s}^{2} + \mathcal{O}\left(z^{2}\ln z\right) , \qquad z \equiv m/T,$$
$$\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} = \frac{8}{5} \left(\frac{1}{3} - c_{s}^{2}\right) + \mathcal{O}\left(z^{4}\right) , \qquad 14$$

Bulk viscosity from kinetic theory

Weinberg (matter coupled to radiation)

$$\zeta = 15 \eta \left(\frac{1}{3} - c_s^2\right)^2$$

Dusling et al (pure glue)

$$\zeta \approx 50 \eta \left(\frac{1}{3} - c_s^2\right)^2$$

14-moment approximation

$$\zeta \approx 73 \eta \left(\frac{1}{3} - c_s^2\right)^2$$

QGP?

We don't do EbE (sorry Kodama ...) sWN $\eta/s = 0.16$

Works for n=2 and n=3

16

In ultracentral collisions: Works for all of them

Gardim&Grassi&Luzum&Ollitrault

$$v_n = C_n \epsilon_n$$
 $C_n = \langle v_n \rangle_{\rm ev} / \langle \epsilon_n \rangle_{\rm ev}$

no dependence on initial state; can be computed using any IC

What we do:

We compute this coefficient for an arbitrary IC, but with the **correct multiplicity** and **average pT**

In this talk ...

✓ We solve the fluid-dynamical equations using a relativistic version of the KT algorithm Schenke&Jeon&Gale

Phys.Rev. C82 (2010) 014903

Freeze-out via Cooper-Frye, T=140 MeV

 \checkmark no δf for bulk! For shear, it is included.

✓ lQCD + HRG EoS by Huovinen&Petrescky Nucl.Phys. A837 (2010) 26-53

✓ τ_0 =1 fm, equilibrium

In ultracentral collisions: data from CMS

hard to get with hydro

Effect of nonlinear terms

usual

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta$$

with nonlinear terms

$$\begin{aligned} \tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + 2\pi^{\langle \mu}_{\alpha} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta \\ &+ \frac{18}{35} \tau_{\pi} \frac{\pi^{\langle \mu}_{\alpha} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi^{\langle \mu}_{\alpha} \sigma^{\nu\rangle\alpha}. \end{aligned}$$

can we see a difference?

Effect of nonlinear terms

MUSIC 2.0

Effect of bulk viscous pressure (1)

Bulk Only

$$\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta - \left(1 - c_s^2\right)\tau_{\Pi}\Pi\theta$$

Shear Only

$$\begin{aligned} \tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + 2\pi_{\alpha}^{\langle \mu} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta \\ &+ \frac{18}{35} \tau_{\pi} \frac{\pi_{\alpha}^{\langle \mu} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi_{\alpha}^{\langle \mu} \sigma^{\nu\rangle\alpha}. \end{aligned}$$

assume effective viscosities:

$$\frac{\eta}{s} = \text{const}$$
$$\frac{\zeta}{s} = \text{const}$$

22

Effect of bulk viscous pressure

MUSIC 2.0

Effect of bulk viscous pressure

Effect of bulk viscous pressure (2)

Shear Only

$$\begin{split} \tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + 2\pi^{\langle \mu}_{\alpha} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta \\ &+ \frac{18}{35} \tau_{\pi} \frac{\pi^{\langle \mu}_{\alpha} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi^{\langle \mu}_{\alpha} \sigma^{\nu\rangle\alpha}. \end{split}$$

Complete equations

$$\begin{aligned} \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta\theta - \left(1 - c_s^2\right)\tau_{\Pi}\Pi\theta + \frac{8}{5}\left(\frac{1}{3} - c_s^2\right)\tau_{\Pi}\pi^{\mu\nu}\sigma_{\mu\nu} ,\\ \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi^{\langle\mu}_{\alpha}\omega^{\nu\rangle\alpha} - \frac{4}{3}\tau_{\pi}\pi^{\mu\nu}\theta - \frac{10}{7}\tau_{\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} \\ &+ \frac{18}{35}\tau_{\pi}\frac{\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha}}{\varepsilon_0 + P_0} + \frac{6}{5}\tau_{\pi}\Pi\sigma^{\mu\nu}. \end{aligned}$$

Effect of bulk viscous pressure

26

Summary/conclusions

We studied the effect of bulk viscosity and nonlinear terms on the azimuthal momentum anisotropies

✓ We see a clear effect of bulk viscosity on flow

✓ When viscosity becomes large, nonlinear terms also become relevant

✓ Ultracentral collisions are a challenge to hydro models

Ongoing:

- X Actual extraction of bulk viscosity from data
- X Inclusion of heat flow
- **×** Inclusion of δf (discussed in previous talk)
- X Effects on photons and dileptons

My special thanks to Kodama

- ✓ My undergrad supervisor
- ✓ My Masters supervisor
- ✓ My neighbor (thanks for all the rides)

ありがとう